HEAL DSpace

Application of radial basis function networks for wind power forecasting

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sideratos, G en
dc.contributor.author Hatziargyriou, ND en
dc.date.accessioned 2014-03-01T02:43:57Z
dc.date.available 2014-03-01T02:43:57Z
dc.date.issued 2006 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31563
dc.subject Artificial Intelligent en
dc.subject Fuzzy Logic en
dc.subject Numerical Weather Prediction en
dc.subject Radial Basis Function en
dc.subject Radial Basis Function Network en
dc.subject rbf neural network en
dc.subject Wind Farm en
dc.subject Wind Power en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Fuzzy logic model en
dc.subject.other Numerical weather predictions (NWP) en
dc.subject.other Electric load forecasting en
dc.subject.other Fuzzy sets en
dc.subject.other Mathematical techniques en
dc.subject.other Numerical methods en
dc.subject.other Set theory en
dc.subject.other Radial basis function networks en
dc.title Application of radial basis function networks for wind power forecasting en
heal.type conferenceItem en
heal.identifier.primary 10.1007/11840930_76 en
heal.identifier.secondary http://dx.doi.org/10.1007/11840930_76 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract In this paper, an advanced system based on artificial intelligence and fuzzy logic techniques is developed to predict the wind power output of a wind farm. A fuzzy logic model is applied first to check the reliability of the numerical weather predictions (NWPs) and to split them in two sub-sets, of good and bad quality NWPs, respectively. Two Radial Basis Function (RBF) neural networks, one for each sub-set are trained next to estimate the wind power. Results from a real wind farm are presented and the added value of the proposed method is demonstrated by comparison with alternative methods. © Springer-Verlag Berlin Heidelberg 2006. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/11840930_76 en
dc.identifier.isi ISI:000241475200076 en
dc.identifier.volume 4132 LNCS - II en
dc.identifier.spage 726 en
dc.identifier.epage 735 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής