HEAL DSpace

Artificial intelligence combined with hybrid FEM-BE techniques for global transformer optimization

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Amoiralis, EI en
dc.contributor.author Georgilakis, PS en
dc.contributor.author Tsili, MA en
dc.contributor.author Kladas, AG en
dc.date.accessioned 2014-03-01T02:43:57Z
dc.date.available 2014-03-01T02:43:57Z
dc.date.issued 2006 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31569
dc.subject Artificial Intelligent en
dc.subject Attribute Selection en
dc.subject Boundary Element en
dc.subject Design Optimization en
dc.subject Finite Element en
dc.subject Numerical Technique en
dc.subject Power Transformer en
dc.subject Success Rate en
dc.subject Decision Tree en
dc.subject Neural Network en
dc.subject.other Boundary element modeling en
dc.subject.other Power transformers en
dc.subject.other Winding material en
dc.subject.other Boundary element method en
dc.subject.other Electric transformers en
dc.subject.other Finite element method en
dc.subject.other Machine design en
dc.subject.other Mathematical models en
dc.subject.other Optimization en
dc.subject.other Artificial intelligence en
dc.title Artificial intelligence combined with hybrid FEM-BE techniques for global transformer optimization en
heal.type conferenceItem en
heal.identifier.primary 10.1109/CEFC-06.2006.1632921 en
heal.identifier.secondary http://dx.doi.org/10.1109/CEFC-06.2006.1632921 en
heal.identifier.secondary 1632921 en
heal.publicationDate 2006 en
heal.abstract The aim of the transformer design optimization is to define in detail the dimensions of all the parts of the transformer, based on the given specification, using available materials economically in order to achieve lower cost, lower weight, reduced size and better operating performance. In this paper, a hybrid artificial intelligence - numerical technique is proposed for the selection of winding material in power transformers. The technique uses decision trees for attribute selection and neural networks for winding material classification, along with finite element - boundary element modeling of the transformer for the calculation of the performance characteristics of each considered design. The accuracy of the proposed method is 95.5% (classification success rate for the winding material on an unknown test set), which makes it very efficient for industrial use. ©2006 IEEE. en
heal.journalName 12th Biennial IEEE Conference on Electromagnetic Field Computation, CEFC 2006 en
dc.identifier.doi 10.1109/CEFC-06.2006.1632921 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής