dc.contributor.author |
Amoiralis, EI |
en |
dc.contributor.author |
Georgilakis, PS |
en |
dc.contributor.author |
Tsili, MA |
en |
dc.contributor.author |
Kladas, AG |
en |
dc.date.accessioned |
2014-03-01T02:43:57Z |
|
dc.date.available |
2014-03-01T02:43:57Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31569 |
|
dc.subject |
Artificial Intelligent |
en |
dc.subject |
Attribute Selection |
en |
dc.subject |
Boundary Element |
en |
dc.subject |
Design Optimization |
en |
dc.subject |
Finite Element |
en |
dc.subject |
Numerical Technique |
en |
dc.subject |
Power Transformer |
en |
dc.subject |
Success Rate |
en |
dc.subject |
Decision Tree |
en |
dc.subject |
Neural Network |
en |
dc.subject.other |
Boundary element modeling |
en |
dc.subject.other |
Power transformers |
en |
dc.subject.other |
Winding material |
en |
dc.subject.other |
Boundary element method |
en |
dc.subject.other |
Electric transformers |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Machine design |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Artificial intelligence |
en |
dc.title |
Artificial intelligence combined with hybrid FEM-BE techniques for global transformer optimization |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/CEFC-06.2006.1632921 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/CEFC-06.2006.1632921 |
en |
heal.identifier.secondary |
1632921 |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
The aim of the transformer design optimization is to define in detail the dimensions of all the parts of the transformer, based on the given specification, using available materials economically in order to achieve lower cost, lower weight, reduced size and better operating performance. In this paper, a hybrid artificial intelligence - numerical technique is proposed for the selection of winding material in power transformers. The technique uses decision trees for attribute selection and neural networks for winding material classification, along with finite element - boundary element modeling of the transformer for the calculation of the performance characteristics of each considered design. The accuracy of the proposed method is 95.5% (classification success rate for the winding material on an unknown test set), which makes it very efficient for industrial use. ©2006 IEEE. |
en |
heal.journalName |
12th Biennial IEEE Conference on Electromagnetic Field Computation, CEFC 2006 |
en |
dc.identifier.doi |
10.1109/CEFC-06.2006.1632921 |
en |