HEAL DSpace

Bottom-up & top-down object detection using primal sketch features and graphical models

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kokkinos, I en
dc.contributor.author Maragos, P en
dc.contributor.author Yuille, A en
dc.date.accessioned 2014-03-01T02:43:58Z
dc.date.available 2014-03-01T02:43:58Z
dc.date.issued 2006 en
dc.identifier.issn 10636919 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31578
dc.subject Feature Detection en
dc.subject Graphical Model en
dc.subject Interest Points en
dc.subject Object Detection en
dc.subject Object Representation en
dc.subject Bottom Up en
dc.subject Front End en
dc.subject Top Down en
dc.subject.other Graphical models en
dc.subject.other Object representation en
dc.subject.other Edge detection en
dc.subject.other Feature extraction en
dc.subject.other Graphic methods en
dc.subject.other Mathematical models en
dc.subject.other Set theory en
dc.subject.other Object recognition en
dc.title Bottom-up & top-down object detection using primal sketch features and graphical models en
heal.type conferenceItem en
heal.identifier.primary 10.1109/CVPR.2006.74 en
heal.identifier.secondary http://dx.doi.org/10.1109/CVPR.2006.74 en
heal.identifier.secondary 1640984 en
heal.publicationDate 2006 en
heal.abstract A combination of techniques that is becoming increasingly popular is the construction of part-based object representations using the outputs of interest-point detectors. Our contributions in this paper are twofold: first, we propose a primal-sketch-based set of image tokens that are used for object representation and detection. Second, top-down information is introduced based on an efficient method for the evaluation of the likelihood of hypothesized part locations. This allows us to use graphical model techniques to complement bottom-up detection, by proposing and finding the parts of the object that were missed by the front-end feature detection stage. Detection results for four object categories validate the merits of this joint top-down and bottom-up approach. © 2006 IEEE. en
heal.journalName Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition en
dc.identifier.doi 10.1109/CVPR.2006.74 en
dc.identifier.volume 2 en
dc.identifier.spage 1893 en
dc.identifier.epage 1900 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής