dc.contributor.author |
Kokkinos, I |
en |
dc.contributor.author |
Maragos, P |
en |
dc.contributor.author |
Yuille, A |
en |
dc.date.accessioned |
2014-03-01T02:43:58Z |
|
dc.date.available |
2014-03-01T02:43:58Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
10636919 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31578 |
|
dc.subject |
Feature Detection |
en |
dc.subject |
Graphical Model |
en |
dc.subject |
Interest Points |
en |
dc.subject |
Object Detection |
en |
dc.subject |
Object Representation |
en |
dc.subject |
Bottom Up |
en |
dc.subject |
Front End |
en |
dc.subject |
Top Down |
en |
dc.subject.other |
Graphical models |
en |
dc.subject.other |
Object representation |
en |
dc.subject.other |
Edge detection |
en |
dc.subject.other |
Feature extraction |
en |
dc.subject.other |
Graphic methods |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Set theory |
en |
dc.subject.other |
Object recognition |
en |
dc.title |
Bottom-up & top-down object detection using primal sketch features and graphical models |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/CVPR.2006.74 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/CVPR.2006.74 |
en |
heal.identifier.secondary |
1640984 |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
A combination of techniques that is becoming increasingly popular is the construction of part-based object representations using the outputs of interest-point detectors. Our contributions in this paper are twofold: first, we propose a primal-sketch-based set of image tokens that are used for object representation and detection. Second, top-down information is introduced based on an efficient method for the evaluation of the likelihood of hypothesized part locations. This allows us to use graphical model techniques to complement bottom-up detection, by proposing and finding the parts of the object that were missed by the front-end feature detection stage. Detection results for four object categories validate the merits of this joint top-down and bottom-up approach. © 2006 IEEE. |
en |
heal.journalName |
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
en |
dc.identifier.doi |
10.1109/CVPR.2006.74 |
en |
dc.identifier.volume |
2 |
en |
dc.identifier.spage |
1893 |
en |
dc.identifier.epage |
1900 |
en |