HEAL DSpace

Compressor blade optimization using a continuous adjoint formulation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadimitriou, DI en
dc.contributor.author Giannakoglou, KC en
dc.date.accessioned 2014-03-01T02:43:59Z
dc.date.available 2014-03-01T02:43:59Z
dc.date.issued 2006 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31590
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-33750874487&partnerID=40&md5=bc4b40605574228281c684c5e15f249f en
dc.relation.uri http://147.102.55.162/research/pdfs/3_081.pdf en
dc.subject Adjoint Method en
dc.subject Constrained Optimization en
dc.subject Entropy Generation en
dc.subject Geometric Constraints en
dc.subject lagrange multiplier en
dc.subject Objective Function en
dc.subject Penalty Method en
dc.subject navier-stokes equation en
dc.subject Non Uniform Rational B Spline en
dc.subject Steepest Descent en
dc.subject.other Cascade efficiency en
dc.subject.other Compressor blade cascade en
dc.subject.other Design variables en
dc.subject.other Objective function en
dc.subject.other Aerodynamics en
dc.subject.other Cascades (fluid mechanics) en
dc.subject.other Compressors en
dc.subject.other Gradient methods en
dc.subject.other Navier Stokes equations en
dc.subject.other Splines en
dc.subject.other Turbomachine blades en
dc.title Compressor blade optimization using a continuous adjoint formulation en
heal.type conferenceItem en
heal.publicationDate 2006 en
heal.abstract In this paper, a constrained optimization algorithm is formulated and utilized to improve the aerodynamic performance of a 3D peripheral compressor blade cascade. The cascade efficiency is measured in terms of entropy generation along the developed flowfield, which defines the field objective functional to be minimized. Its gradient with respect to the design variables, which are the coordinates of the Non-Uniform Rational B-Spline (NURBS) control points defining the blade, is computed through a continuous adjoint formulation of the Navier-Stokes equations based on the aforementioned functional. The steepest descent algorithm is used to locate the optimal set of design variables, i.e. the optimal blade shape. In addition to the well-known advantages of the adjoint method, the current formulation has even less CPU cost for the gradient computation as it leads to gradient expression which is free of field variations in geometrical quantities (such as derivatives of interior grid node coordinates with respect to the design variables); the computation of the latter would be costly since it requires remeshing anew the computational domain for each bifurcated design variable. The geometrical constraints, which depend solely on the blade parameterization, are handled by a quadratic penalty method by introducing additional Lagrange multipliers. Copyright © 2006 by ASME. en
heal.journalName Proceedings of the ASME Turbo Expo en
dc.identifier.volume 6 PART B en
dc.identifier.spage 1309 en
dc.identifier.epage 1317 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής