HEAL DSpace

Data mining based on gene expression programming and clonal selection

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Karakasis, VK en
dc.contributor.author Stafylopatis, A en
dc.date.accessioned 2014-03-01T02:43:59Z
dc.date.available 2014-03-01T02:43:59Z
dc.date.issued 2006 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31599
dc.subject Benchmark Problem en
dc.subject Clonal Selection en
dc.subject Clonal Selection Algorithm en
dc.subject Computational Efficiency en
dc.subject Convergence Rate en
dc.subject Data Mining en
dc.subject Gene Expression Programming en
dc.subject Prediction Accuracy en
dc.subject.other Clonal Selection Principles en
dc.subject.other Gene Expression Programming (GEP) en
dc.subject.other Computational methods en
dc.subject.other Disease control en
dc.subject.other Evolutionary algorithms en
dc.subject.other Gene expression en
dc.subject.other Genetic programming en
dc.subject.other Logic programming en
dc.subject.other Problem solving en
dc.subject.other Data mining en
dc.title Data mining based on gene expression programming and clonal selection en
heal.type conferenceItem en
heal.identifier.primary 10.1109/CEC.2006.1688353 en
heal.identifier.secondary http://dx.doi.org/10.1109/CEC.2006.1688353 en
heal.identifier.secondary 1688353 en
heal.publicationDate 2006 en
heal.abstract A hybrid evolutionary technique is proposed for data mining tasks, which combines the Clonal Selection Principle with Gene Expression Programming (GEP). The proposed algorithm introduces the notion of Data Class Antigens, which is used to represent a class of data. The produced rules are evolved by a clonal selection algorithm, which extends the recently proposed CLONALG algorithm. In the present algorithm, among other new features, a receptor editing step has been incorporated. Moreover, the rules themselves are represented as antibodies, which are coded as GEP chromosomes, in order to exploit the flexibility and the expressiveness of such encoding. The algorithm is tested on some benchmark problems of the UCI repository, and in particular on the set of MONK problems and the Pima Indians Diabetes problem. In both problems, the results in terms of prediction accuracy are very satisfactory, albeit slightly less accurate than those obtained by a standard GEP technique. In terms of convergence rate and computational efficiency, however, the technique proposed here markedly outperforms the standard GEP algorithm. © 2006 IEEE. en
heal.journalName 2006 IEEE Congress on Evolutionary Computation, CEC 2006 en
dc.identifier.doi 10.1109/CEC.2006.1688353 en
dc.identifier.spage 514 en
dc.identifier.epage 521 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής