dc.contributor.author |
Afrati, F |
en |
dc.contributor.author |
Milis, I |
en |
dc.date.accessioned |
2014-03-01T02:44:00Z |
|
dc.date.available |
2014-03-01T02:44:00Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0166218X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31608 |
|
dc.subject |
Approximation algorithms |
en |
dc.subject |
MIN-SUM criteria |
en |
dc.subject |
PTASs |
en |
dc.subject |
Scheduling |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Polynomial approximation |
en |
dc.subject.other |
Scheduling |
en |
dc.subject.other |
Approximation algorithms |
en |
dc.subject.other |
MIN-SUM criteria |
en |
dc.subject.other |
PTASs |
en |
dc.subject.other |
Problem solving |
en |
dc.title |
Designing PTASs for MIN-SUM scheduling problems |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1016/j.dam.2005.05.014 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.dam.2005.05.014 |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
We review approximability and inapproximability results for MIN-SUM scheduling problems and we focus on techniques for designing polynomial time approximation schemes for this class of problems. We present examples which illustrate the efficient use of the ratio partitioning and time partitioning techniques. © 2005 Elsevier B.V. All rights reserved. |
en |
heal.journalName |
Discrete Applied Mathematics |
en |
dc.identifier.doi |
10.1016/j.dam.2005.05.014 |
en |
dc.identifier.volume |
154 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
622 |
en |
dc.identifier.epage |
639 |
en |