dc.contributor.author |
Bartzas, A |
en |
dc.contributor.author |
Mamagkakis, S |
en |
dc.contributor.author |
Pouiklis, G |
en |
dc.contributor.author |
Atienza, D |
en |
dc.contributor.author |
Catthoor, F |
en |
dc.contributor.author |
Soudris, D |
en |
dc.contributor.author |
Thanailakis, A |
en |
dc.date.accessioned |
2014-03-01T02:44:01Z |
|
dc.date.available |
2014-03-01T02:44:01Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31619 |
|
dc.subject |
Case Study |
en |
dc.subject |
Dynamic Data |
en |
dc.subject |
Embedded System |
en |
dc.subject |
Energy Consumption |
en |
dc.subject |
Energy Saving |
en |
dc.subject |
High Energy |
en |
dc.subject |
pareto optimality |
en |
dc.subject |
Perforation |
en |
dc.title |
Dynamic data type refinement methodology for systematic performance-energy design exploration of network applications |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1145/1131692 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1145/1131692 |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
Network applications are becoming increasingly popular in the embedded systems domain requiring high performance, which leads to high energy consumption. In networks is observed that due to their inherent dynamic nature the dynamic memory subsystem is a main contributor to the overall energy consumption and performance. This paper presents a new systematic methodology, generating performance-energy trade-offs by implementing dynamic data |
en |
heal.journalName |
Design, Automation, and Test in Europe |
en |
dc.identifier.doi |
10.1145/1131692 |
en |