HEAL DSpace

EM field induced in inhomogeneous dielectric spheres by external sources

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kokkorakis, GC en
dc.contributor.author Fikioris, JG en
dc.contributor.author Fikioris, G en
dc.date.accessioned 2014-03-01T02:44:02Z
dc.date.available 2014-03-01T02:44:02Z
dc.date.issued 2006 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31629
dc.subject.other Eigenvalues and eigenfunctions en
dc.subject.other Electric fields en
dc.subject.other Electromagnetic field effects en
dc.subject.other Electromagnetic fields en
dc.subject.other Electromagnetic waves en
dc.subject.other Electromagnetism en
dc.subject.other Integrodifferential equations en
dc.subject.other Magnetic field effects en
dc.subject.other Magnetic permeability en
dc.subject.other Magnetic properties en
dc.subject.other Piers en
dc.subject.other Vectors en
dc.subject.other Wave equations en
dc.subject.other Analytical solutions en
dc.subject.other Crucial parameters en
dc.subject.other Dielectric constants en
dc.subject.other Eigen vectors en
dc.subject.other Eigenvalue equations en
dc.subject.other External sources en
dc.subject.other Field induced en
dc.subject.other In homogeneities en
dc.subject.other Inhomogeneous dielectric bodies en
dc.subject.other Inhomogeneous dielectrics en
dc.subject.other Integrodifferential equation] en
dc.subject.other Orthogonal expansions en
dc.subject.other Radial functions en
dc.subject.other Separation of variables en
dc.subject.other Spherical shapes en
dc.subject.other Variable densities en
dc.subject.other Vector wave equations en
dc.subject.other Spheres en
dc.title EM field induced in inhomogeneous dielectric spheres by external sources en
heal.type conferenceItem en
heal.identifier.primary 10.2529/PIERS050831064026 en
heal.identifier.secondary http://dx.doi.org/10.2529/PIERS050831064026 en
heal.publicationDate 2006 en
heal.abstract The electromagnetic field induced in the interior of inhomogeneous dielectric bodies by external sources can be evaluated by solving the well-known electric field integrodifferential equation (EFIDE). For spheres with constant magnetic permeability μ, but variable dielectric constant ε(r, θ,4φ) a direct, mainly analytical solution can be used even in case when the inhomogeneity in ε renders separation of variables inapplicable. This approach constitutes a generalization of the hybrid (analytical-numerical) scalar method developed by the authors in two recent papers, for the corresponding acoustic (scalar) field induced in spheres with variable density and/or compressibility. This extension, by no means trivial, owing to the vector and integrodifferential nature of the equation, is based on field-vector expansions using the set of three harmonic surface vectors, orthogonal and complete over the surface of the sphere, for their angular (θ,4φ) dependence, and Dini's expansions of a general type for their radial functions. The use of the latter has been shown to be superior to other possible sets of orthogonal expansions and as far as its convergence is concerned it may further be improved by properly choosing a crucial parameter in their eigenvalue equation. The restriction to the spherical shape is imposed here to allow use of the well-known expansion of Green's dyadic in spherical eigenvectors of the vector wave equation. en
heal.journalName PIERS 2006 Cambridge - Progress in Electromagnetics Research Symposium, Proceedings en
dc.identifier.doi 10.2529/PIERS050831064026 en
dc.identifier.spage 275 en
dc.identifier.epage 278 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής