dc.contributor.author |
Liodakis, S |
en |
dc.contributor.author |
Antonopoulos, I |
en |
dc.date.accessioned |
2014-03-01T02:44:02Z |
|
dc.date.available |
2014-03-01T02:44:02Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31633 |
|
dc.subject |
Air Conditioning |
en |
dc.subject |
Carbon Mineralization |
en |
dc.subject |
European Commission |
en |
dc.subject |
Magnesium |
en |
dc.subject |
Thermal Analysis |
en |
dc.subject |
Ammonium Sulphate |
en |
dc.subject |
Ammonium Sulfate |
en |
dc.subject.other |
Ammonium compounds |
en |
dc.subject.other |
Carbonate minerals |
en |
dc.subject.other |
Carbonates |
en |
dc.subject.other |
Combustion |
en |
dc.subject.other |
Garnets |
en |
dc.subject.other |
Ketones |
en |
dc.subject.other |
Light metals |
en |
dc.subject.other |
Magnesium |
en |
dc.subject.other |
Magnesium printing plates |
en |
dc.subject.other |
Materials properties |
en |
dc.subject.other |
Materials testing |
en |
dc.subject.other |
Mineralogy |
en |
dc.subject.other |
Minerals |
en |
dc.subject.other |
Nonmetals |
en |
dc.subject.other |
Oxygen |
en |
dc.subject.other |
Silicate minerals |
en |
dc.subject.other |
Smoke |
en |
dc.subject.other |
Sulfate minerals |
en |
dc.subject.other |
Thermoanalysis |
en |
dc.subject.other |
Thermochemistry |
en |
dc.subject.other |
Ammonium sulfates |
en |
dc.subject.other |
Ammonium sulphate |
en |
dc.subject.other |
Diammonium Phosphate |
en |
dc.subject.other |
European Commission |
en |
dc.subject.other |
Fire retardation |
en |
dc.subject.other |
International symposium |
en |
dc.subject.other |
Magnesium carbonate |
en |
dc.subject.other |
Mediterranean areas |
en |
dc.subject.other |
Oxygen atmospheres |
en |
dc.subject.other |
Pistacia lentiscus L. |
en |
dc.subject.other |
Self-ignition |
en |
dc.subject.other |
Smoldering combustion |
en |
dc.subject.other |
Solid materials |
en |
dc.subject.other |
Static air |
en |
dc.subject.other |
Thermal analysis |
en |
dc.subject.other |
Ignition |
en |
dc.subject.other |
Ammonium Compounds |
en |
dc.subject.other |
Combustion |
en |
dc.subject.other |
Fires |
en |
dc.subject.other |
Ketones |
en |
dc.subject.other |
Light Metals |
en |
dc.subject.other |
Magnesium |
en |
dc.subject.other |
Magnesium Carbonate |
en |
dc.subject.other |
Minerals |
en |
dc.subject.other |
Oxygen |
en |
dc.subject.other |
Phosphates |
en |
dc.subject.other |
Printing Plates |
en |
dc.title |
Evaluating the fire retardation efficiency of diammonium phosphate, ammonium sulphate and magnesium carbonate minerals on Pistacia lentiscus L. |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ISEIMA.2006.345047 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ISEIMA.2006.345047 |
en |
heal.identifier.secondary |
4150436 |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
The retardation properties of diammonium phosphate (DAP), ammonium sulfate (AS) and a mixture of hun-tite/hydromagnesite minerals were studied on particle foliar combustion of Pistacia lentiscus L. (Mastic tree) collected from wildland/urban zones near Athens. Two methods were employed for this study. The first is thermal analysis (TG, DTG, SDTA), that uses samples of 15-17 mg under oxygen atmosphere conditions to favour complete combustion. The second is a laboratory-scale method (similar to the one described by the 79/831 European Commission Directive for testing relative self ignition properties of solid materials), that uses samples of 2.5 g under static air conditions and low heating rate to ensure smoldering combustion. Both methods concluded that DAP and AS are the most effective retardants, with each presenting better performance at different properties, while the minerals are the least efficient ones. ©2006 IEEE. |
en |
heal.journalName |
2006 1st International Symposium on Environment Identities and Mediterranean Area, ISEIM |
en |
dc.identifier.doi |
10.1109/ISEIMA.2006.345047 |
en |
dc.identifier.spage |
35 |
en |
dc.identifier.epage |
39 |
en |