HEAL DSpace

Fast approximate wavelet tracking on streams

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Cormode, G en
dc.contributor.author Garofalakis, M en
dc.contributor.author Sacharidis, D en
dc.date.accessioned 2014-03-01T02:44:03Z
dc.date.available 2014-03-01T02:44:03Z
dc.date.issued 2006 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31640
dc.subject Data Distribution en
dc.subject Data Stream en
dc.subject Experimental Analysis en
dc.subject Hierarchical Structure en
dc.subject High Speed en
dc.subject Network Monitoring en
dc.subject Multi Dimensional en
dc.subject Real Time en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Croup-Count Sketch (CCS) en
dc.subject.other Experimental analysis en
dc.subject.other Network monitoring en
dc.subject.other Streaming applications en
dc.subject.other Algorithms en
dc.subject.other Data acquisition en
dc.subject.other Hierarchical systems en
dc.subject.other Optimization en
dc.subject.other Problem solving en
dc.subject.other Query languages en
dc.subject.other Wavelet transforms en
dc.subject.other Approximation theory en
dc.title Fast approximate wavelet tracking on streams en
heal.type conferenceItem en
heal.identifier.primary 10.1007/11687238_4 en
heal.identifier.secondary http://dx.doi.org/10.1007/11687238_4 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract Recent years have seen growing interest in effective algorithms for summarizing and querying massive, high-speed data streams, Randomized sketch synopses provide accurate approximations for general-purpose summaries of the streaming data distribution (e.g., wavelets). The focus of existing work has typically been on minimizing space requirements of the maintained synopsis -however, to effectively support high-speed data-stream analysis, a crucial practical requirement is to also optimize: (1) the update time for incorporating a streaming data element in the sketch, and (2) the query time for producing an approximate summary (e.g., the top wavelet coefficients) from the sketch. Such time costs must be small enough to cope with rapid stream-arrival rates and the realtime querying requirements of typical streaming applications (e.g., ISP network monitoring). With cheap and plentiful memory, space is often only a secondary concern after query/update time costs. In this paper, we propose the first fast solution to the problem of tracking wavelet representations of one-dimensional and multi-dimensional data streams, based on a novel stream synopsis, the Croup-Count Sketch (CCS). By imposing a hierarchical structure of groups over the data and applying the GCS, our algorithms can quickly recover the most important wavelet coefficients with guaranteed accuracy. A tradeoff between query time and update time is established, by varying the hierarchical structure of groups, allowing the right balance to be found for specific data stream. Experimental analysis confirms this tradeoff, and shows that all our methods significantly outperform previously known methods in terms of both update time and query time, while maintaining a high level of accuracy. © Springer-Verlag Berlin Heidelberg 2006. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/11687238_4 en
dc.identifier.isi ISI:000237081600004 en
dc.identifier.volume 3896 LNCS en
dc.identifier.spage 4 en
dc.identifier.epage 22 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής