dc.contributor.author |
Rigatos, GG |
en |
dc.contributor.author |
Tzafestas, SG |
en |
dc.date.accessioned |
2014-03-01T02:44:03Z |
|
dc.date.available |
2014-03-01T02:44:03Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0302-9743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31641 |
|
dc.subject |
Diffusion Equation |
en |
dc.subject |
Feed Forward Neural Network |
en |
dc.subject |
Harmonic Oscillator |
en |
dc.subject |
Hermite Polynomial |
en |
dc.subject |
Image Processing |
en |
dc.subject |
Nonparametric Estimation |
en |
dc.subject |
System Modelling |
en |
dc.subject |
Activation Function |
en |
dc.subject |
Fourier Transform |
en |
dc.subject |
Neural Network |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Fourier transforms |
en |
dc.subject.other |
Functions |
en |
dc.subject.other |
Oscillators (electronic) |
en |
dc.subject.other |
Parameter estimation |
en |
dc.subject.other |
Polynomials |
en |
dc.subject.other |
Hermite basis functions |
en |
dc.subject.other |
Particle-wave nature |
en |
dc.subject.other |
Polynomial activation functions |
en |
dc.subject.other |
System modeling |
en |
dc.subject.other |
Feedforward neural networks |
en |
dc.title |
Feed-forward neural networks using hermite polynomial activation functions |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/11752912_33 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/11752912_33 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
In this paper feed-forward neural networks are introduced where hidden units employ orthogonal Herrnite polynomials for their activation functions. The proposed neural networks have some interesting properties: (i) the basis functions are invariant under the Fourier transform, subject only to a change of scale, and (ii) the basis functions are the eigenstates of the quantum harmonic oscillator, and stem from the solution of Schrödinger's diffusion equation. The proposed neural networks demonstrate the particle-wave nature of information and can be used in nonparametric estimation. Possible applications of neural networks with Hermite basis functions include system modelling and image processing. © Springer-Vorlag Berlin Hoidelberg 2006. |
en |
heal.publisher |
SPRINGER-VERLAG BERLIN |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
heal.bookName |
LECTURE NOTES IN COMPUTER SCIENCE |
en |
dc.identifier.doi |
10.1007/11752912_33 |
en |
dc.identifier.isi |
ISI:000238053100031 |
en |
dc.identifier.volume |
3955 LNAI |
en |
dc.identifier.spage |
323 |
en |
dc.identifier.epage |
333 |
en |