HEAL DSpace

Feed-forward neural networks using hermite polynomial activation functions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Rigatos, GG en
dc.contributor.author Tzafestas, SG en
dc.date.accessioned 2014-03-01T02:44:03Z
dc.date.available 2014-03-01T02:44:03Z
dc.date.issued 2006 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31641
dc.subject Diffusion Equation en
dc.subject Feed Forward Neural Network en
dc.subject Harmonic Oscillator en
dc.subject Hermite Polynomial en
dc.subject Image Processing en
dc.subject Nonparametric Estimation en
dc.subject System Modelling en
dc.subject Activation Function en
dc.subject Fourier Transform en
dc.subject Neural Network en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Eigenvalues and eigenfunctions en
dc.subject.other Fourier transforms en
dc.subject.other Functions en
dc.subject.other Oscillators (electronic) en
dc.subject.other Parameter estimation en
dc.subject.other Polynomials en
dc.subject.other Hermite basis functions en
dc.subject.other Particle-wave nature en
dc.subject.other Polynomial activation functions en
dc.subject.other System modeling en
dc.subject.other Feedforward neural networks en
dc.title Feed-forward neural networks using hermite polynomial activation functions en
heal.type conferenceItem en
heal.identifier.primary 10.1007/11752912_33 en
heal.identifier.secondary http://dx.doi.org/10.1007/11752912_33 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract In this paper feed-forward neural networks are introduced where hidden units employ orthogonal Herrnite polynomials for their activation functions. The proposed neural networks have some interesting properties: (i) the basis functions are invariant under the Fourier transform, subject only to a change of scale, and (ii) the basis functions are the eigenstates of the quantum harmonic oscillator, and stem from the solution of Schrödinger's diffusion equation. The proposed neural networks demonstrate the particle-wave nature of information and can be used in nonparametric estimation. Possible applications of neural networks with Hermite basis functions include system modelling and image processing. © Springer-Vorlag Berlin Hoidelberg 2006. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/11752912_33 en
dc.identifier.isi ISI:000238053100031 en
dc.identifier.volume 3955 LNAI en
dc.identifier.spage 323 en
dc.identifier.epage 333 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής