HEAL DSpace

Improved wind power forecasting using a combined neuro-fuzzy and artificial neural network model

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Katsigiannis, YA en
dc.contributor.author Tsikalakis, AG en
dc.contributor.author Georgilakis, PS en
dc.contributor.author Hatziargyriou, ND en
dc.date.accessioned 2014-03-01T02:44:04Z
dc.date.available 2014-03-01T02:44:04Z
dc.date.issued 2006 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31653
dc.subject Artificial neural networks en
dc.subject Prediction error en
dc.subject Wind power forecasting en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Electric load forecasting en
dc.subject.other Electric power systems en
dc.subject.other Fuzzy sets en
dc.subject.other Mathematical models en
dc.subject.other Statistical methods en
dc.subject.other Prediction error en
dc.subject.other Wind power forecasting en
dc.subject.other Wind power forecasting tool en
dc.subject.other Neural networks en
dc.title Improved wind power forecasting using a combined neuro-fuzzy and artificial neural network model en
heal.type conferenceItem en
heal.identifier.primary 10.1007/11752912_13 en
heal.identifier.secondary http://dx.doi.org/10.1007/11752912_13 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract The intermittent nature of the wind creates significant uncertainty in the operation of power systems with increased wind power penetration, Considerable efforts have been made for the accurate prediction of the wind power using either statistical or physical models. In this paper, a method based on Artificial Neural Network (ANN) is proposed in order to improve the predictions of an existing neuro-fuzzy wind power forecasting model taking into account the evaluation results from the use of this wind power forecasting tool, Thus, an improved wind power forecasting is achieved and a better estimation of the confidence interval of the proposed model is provided. © Springer-Verlag Berlin Heidelberg 2006. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/11752912_13 en
dc.identifier.isi ISI:000238053100011 en
dc.identifier.volume 3955 LNAI en
dc.identifier.spage 105 en
dc.identifier.epage 115 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής