dc.contributor.author |
Ioannou, S |
en |
dc.contributor.author |
Wallace, M |
en |
dc.contributor.author |
Kollias, S |
en |
dc.date.accessioned |
2014-03-01T02:44:04Z |
|
dc.date.available |
2014-03-01T02:44:04Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
10987576 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31656 |
|
dc.subject |
Boundary Detection |
en |
dc.subject |
Error Resilience |
en |
dc.subject |
Expression Analysis |
en |
dc.subject |
Facial Expression |
en |
dc.subject |
Facial Features |
en |
dc.subject |
Feature Extraction |
en |
dc.subject |
Interactive System |
en |
dc.subject |
Multiple Channels |
en |
dc.subject |
Social Psychology |
en |
dc.subject |
Neural Network |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Error analysis |
en |
dc.subject.other |
Feature extraction |
en |
dc.subject.other |
Human computer interaction |
en |
dc.subject.other |
Intelligent systems |
en |
dc.subject.other |
Expression recognition |
en |
dc.subject.other |
Facial feature boundary detection |
en |
dc.subject.other |
Human communication |
en |
dc.subject.other |
Intelligent facial analysis |
en |
dc.subject.other |
Gesture recognition |
en |
dc.title |
Intelligent facial analysis and expression recognition |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/IJCNN.2006.246926 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/IJCNN.2006.246926 |
en |
heal.identifier.secondary |
1716654 |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
Since facial expressions are a key modality in human communication, the automated analysis of facial images and video for the estimation of the displayed expression is central in the design of intuitive and human friendly computer interaction systems. In this paper we present an intelligent feature extraction system which combines analysis from multiple channels based on their confidence, to result in better, error resilient facial feature boundary detection. Neural networks are a key component of the system. Issues such as uncertainty and lack of confidence in the process of feature extraction are considered during the expression analysis and recognition. Various results are presented which illustrate the performance of the method. © 2006 IEEE. |
en |
heal.journalName |
IEEE International Conference on Neural Networks - Conference Proceedings |
en |
dc.identifier.doi |
10.1109/IJCNN.2006.246926 |
en |
dc.identifier.spage |
4029 |
en |
dc.identifier.epage |
4036 |
en |