HEAL DSpace

Intelligent segmentation and classification of pigmented skin lesions in dermatological images

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Maglogiannis, I en
dc.contributor.author Zafiropoulos, E en
dc.contributor.author Kyranoudis, C en
dc.date.accessioned 2014-03-01T02:44:04Z
dc.date.available 2014-03-01T02:44:04Z
dc.date.issued 2006 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31657
dc.subject Computer Vision en
dc.subject Digital Image en
dc.subject Early Detection en
dc.subject Malignant Melanoma en
dc.subject Skin Cancer en
dc.subject Skin Lesion en
dc.subject Support Vector Machine en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Computer vision en
dc.subject.other Intelligent control en
dc.subject.other Learning systems en
dc.subject.other Medical imaging en
dc.subject.other Skin en
dc.subject.other Tumors en
dc.subject.other Dermatology clinics en
dc.subject.other Diagnostic systems en
dc.subject.other Intelligent segmentation en
dc.subject.other Malignant melanoma tumor en
dc.subject.other Image segmentation en
dc.title Intelligent segmentation and classification of pigmented skin lesions in dermatological images en
heal.type conferenceItem en
heal.identifier.primary 10.1007/11752912_23 en
heal.identifier.secondary http://dx.doi.org/10.1007/11752912_23 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract During the last years, computer vision-based diagnostic systems have been used in several hospitals and dermatology clinics, aiming mostly at the early detection of malignant melanoma tumor, which is among the most frequent types of skin cancer, versus other types of non-malignant cutaneous diseases. In this paper we discuss intelligent techniques for the segmentation and classification of pigmented skin lesions in such dermatological images. A local thresholding algorithm is proposed for skin lesion separation and border, texture and color based features, are then extracted from the digital images. Extracted features are used to construct a classification module based on Support Vector Machines (SVM) for the recognition of malignant melanoma versus dysplastic nevus. © Springer-Verlag Berlin Heidelberg 2006. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/11752912_23 en
dc.identifier.isi ISI:000238053100021 en
dc.identifier.volume 3955 LNAI en
dc.identifier.spage 214 en
dc.identifier.epage 223 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής