dc.contributor.author |
Maglogiannis, I |
en |
dc.contributor.author |
Zafiropoulos, E |
en |
dc.contributor.author |
Kyranoudis, C |
en |
dc.date.accessioned |
2014-03-01T02:44:04Z |
|
dc.date.available |
2014-03-01T02:44:04Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0302-9743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31657 |
|
dc.subject |
Computer Vision |
en |
dc.subject |
Digital Image |
en |
dc.subject |
Early Detection |
en |
dc.subject |
Malignant Melanoma |
en |
dc.subject |
Skin Cancer |
en |
dc.subject |
Skin Lesion |
en |
dc.subject |
Support Vector Machine |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.other |
Computer vision |
en |
dc.subject.other |
Intelligent control |
en |
dc.subject.other |
Learning systems |
en |
dc.subject.other |
Medical imaging |
en |
dc.subject.other |
Skin |
en |
dc.subject.other |
Tumors |
en |
dc.subject.other |
Dermatology clinics |
en |
dc.subject.other |
Diagnostic systems |
en |
dc.subject.other |
Intelligent segmentation |
en |
dc.subject.other |
Malignant melanoma tumor |
en |
dc.subject.other |
Image segmentation |
en |
dc.title |
Intelligent segmentation and classification of pigmented skin lesions in dermatological images |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/11752912_23 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/11752912_23 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
During the last years, computer vision-based diagnostic systems have been used in several hospitals and dermatology clinics, aiming mostly at the early detection of malignant melanoma tumor, which is among the most frequent types of skin cancer, versus other types of non-malignant cutaneous diseases. In this paper we discuss intelligent techniques for the segmentation and classification of pigmented skin lesions in such dermatological images. A local thresholding algorithm is proposed for skin lesion separation and border, texture and color based features, are then extracted from the digital images. Extracted features are used to construct a classification module based on Support Vector Machines (SVM) for the recognition of malignant melanoma versus dysplastic nevus. © Springer-Verlag Berlin Heidelberg 2006. |
en |
heal.publisher |
SPRINGER-VERLAG BERLIN |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
heal.bookName |
LECTURE NOTES IN COMPUTER SCIENCE |
en |
dc.identifier.doi |
10.1007/11752912_23 |
en |
dc.identifier.isi |
ISI:000238053100021 |
en |
dc.identifier.volume |
3955 LNAI |
en |
dc.identifier.spage |
214 |
en |
dc.identifier.epage |
223 |
en |