HEAL DSpace

Musical instrument recognition and classification using time encoded signal processing and fast artificial neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mazarakis, G en
dc.contributor.author Tzevelekos, P en
dc.contributor.author Kouroupetroglou, G en
dc.date.accessioned 2014-03-01T02:44:07Z
dc.date.available 2014-03-01T02:44:07Z
dc.date.issued 2006 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31685
dc.subject Artificial Neural Network en
dc.subject Domain Analysis en
dc.subject Musical Instruments en
dc.subject Shape Analysis en
dc.subject Signal Processing en
dc.subject Neural Network en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Computational cost en
dc.subject.other Instrument recognition en
dc.subject.other Organ classification en
dc.subject.other Sound waveforms en
dc.subject.other Classification (of information) en
dc.subject.other Computation theory en
dc.subject.other Frequency domain analysis en
dc.subject.other Musical instruments en
dc.subject.other Neural networks en
dc.subject.other Signal processing en
dc.subject.other Object recognition en
dc.title Musical instrument recognition and classification using time encoded signal processing and fast artificial neural networks en
heal.type conferenceItem en
heal.identifier.primary 10.1007/11752912_26 en
heal.identifier.secondary http://dx.doi.org/10.1007/11752912_26 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract Traditionally, musical instrument recognition is mainly based on frequency domain analysis (sinusoidal analysis, cepstral coefficients) and shape analysis to extract a set of various features. Instruments are usually classified using k-NN classifiers, HMM, Kohonen SOM and Neural Networks. In this work, we describe a system for the recognition of musical instruments from isolated notes. We are introducing the use of a Time Encoded Signal Processing method to produce simple matrices from complex sound waveforms, for instrument note encoding and recognition. These matrices are presented to a Fast Artificial Neural Network (FANN) to perform instrument recognition with promising results in organ classification and reduced computational cost. The evaluation material consists of 470 tones from 19 musical instruments synthesized with 5 wide used synthesizers (Microsoft Synth, Creative SB Live! Synth, Yamaha VL-70m Tone Generator, Edirol Soft-Synth, Kontakt Player) and 84 isolated notes from 20 western orchestral instruments (Iowa University Database). © Springer-Verlag Berlin Heidelberg 2006. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/11752912_26 en
dc.identifier.isi ISI:000238053100024 en
dc.identifier.volume 3955 LNAI en
dc.identifier.spage 246 en
dc.identifier.epage 255 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής