HEAL DSpace

Neural network based glucose - Insulin metabolism models for children with type 1 diabetes

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mougiakakou, SG en
dc.contributor.author Prountzou, A en
dc.contributor.author Iliopoulou, D en
dc.contributor.author Nikita, KS en
dc.contributor.author Vazeou, A en
dc.contributor.author Bartsocas, CS en
dc.date.accessioned 2014-03-01T02:44:07Z
dc.date.available 2014-03-01T02:44:07Z
dc.date.issued 2006 en
dc.identifier.issn 05891019 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31688
dc.subject Adaptive Learning Rate en
dc.subject Artificial Neural Network en
dc.subject Back Propagation Algorithm en
dc.subject compartmental model en
dc.subject Food Intake en
dc.subject type 1 diabetes en
dc.subject Continuous Glucose Monitoring System en
dc.subject Feed Forward en
dc.subject Neural Network en
dc.subject Real Time Recurrent Learning en
dc.subject.other Computer simulation en
dc.subject.other Insulin en
dc.subject.other Learning aids for handicapped persons en
dc.subject.other Metabolism en
dc.subject.other Neural networks en
dc.subject.other Physiological models en
dc.subject.other Real time systems en
dc.subject.other Compartmental Models (CM) en
dc.subject.other Plasma insulin concentration en
dc.subject.other Real Time Recurrent Learning (RTRL) en
dc.subject.other Glucose en
dc.title Neural network based glucose - Insulin metabolism models for children with type 1 diabetes en
heal.type conferenceItem en
heal.identifier.primary 10.1109/IEMBS.2006.260640 en
heal.identifier.secondary http://dx.doi.org/10.1109/IEMBS.2006.260640 en
heal.identifier.secondary 4030424 en
heal.publicationDate 2006 en
heal.abstract In this paper two models for the simulation of glucose-insulin metabolism of children with Type 1 diabetes are presented. The models are based on the combined use of Compartmental Models (CMs) and artificial Neural Networks (NNs). Data from children with Type 1 diabetes, stored in a database, have been used as input to the models. The data are taken from four children with Type 1 diabetes and contain information about glucose levels taken from continuous glucose monitoring system, insulin intake and food intake, along with corresponding time. The influences of taken insulin on plasma insulin concentration, as well as the effect of food intake on glucose input into the blood from the gut, are estimated from the CMs. The outputs of CMs, along with previous glucose measurements, are fed to a NN, which provides short-term prediction of glucose values. For comparative reasons two different NN architectures have been tested: a Feed-Forward NN (FFNN) trained with the back-propagation algorithm with adaptive learning rate and momentum, and a Recurrent NN (RNN), trained with the Real Time Recurrent Learning (RTRL) algorithm. The results indicate that the best prediction performance can be achieved by the use of RNN. © 2006 IEEE. en
heal.journalName Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings en
dc.identifier.doi 10.1109/IEMBS.2006.260640 en
dc.identifier.volume 1 en
dc.identifier.spage 3545 en
dc.identifier.epage 3548 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής