dc.contributor.author |
Vallet, D |
en |
dc.contributor.author |
Fernandez, M |
en |
dc.contributor.author |
Castells, P |
en |
dc.contributor.author |
Mylonas, P |
en |
dc.contributor.author |
Avrithis, Y |
en |
dc.date.accessioned |
2014-03-01T02:44:09Z |
|
dc.date.available |
2014-03-01T02:44:09Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31710 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-33847618728&partnerID=40&md5=2708d033e1f23408128b5be866e2b01f |
en |
dc.relation.uri |
http://www.aaai.org/Papers/Workshops/2006/WS-06-12/WS06-12-007.pdf |
en |
dc.relation.uri |
http://www.acemedia.org/aceMedia/files/document/wp7/2006/mrc06-uam-iti.pdf |
en |
dc.relation.uri |
https://www.aaai.org/Papers/Workshops/2006/WS-06-12/WS06-12-007.pdf |
en |
dc.subject |
Complex Multiplication |
en |
dc.subject |
Information Retrieval |
en |
dc.subject |
User Preferences |
en |
dc.subject.other |
Artificial intelligence |
en |
dc.subject.other |
Context sensitive languages |
en |
dc.subject.other |
Human computer interaction |
en |
dc.subject.other |
Ontology |
en |
dc.subject.other |
Semantics |
en |
dc.subject.other |
Content retrieval |
en |
dc.subject.other |
Retrieval tasks |
en |
dc.subject.other |
Semantic contexts |
en |
dc.subject.other |
Subsets |
en |
dc.subject.other |
Content based retrieval |
en |
dc.title |
Personalized information retrieval in context |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
Personalized content retrieval aims at improving the retrieval process by taking into account the particular interests of individual users. However, not all user preferences are relevant in all situations. It is well known that human preferences are complex, multiple, heterogeneous, changing, even contradictory, and should be understood in context with the user goals and tasks at hand. In this paper we propose a method to build a dynamic representation of the semantic context of ongoing retrieval tasks, which is used to activate different subsets of user interests at runtime, in such a way that out of context preferences are discarded. Our approach is based on an ontology-driven representation of the domain of discourse, providing enriched descriptions of the semantics involved in retrieval actions and preferences, and enabling the definition of effective means to relate preferences and context. copyright © 2006, American Association for Artificial Intelligence (www.aaai.org). All rights reserved. |
en |
heal.journalName |
AAAI Workshop - Technical Report |
en |
dc.identifier.volume |
WS-06-12 |
en |
dc.identifier.spage |
28 |
en |
dc.identifier.epage |
32 |
en |