HEAL DSpace

Self-adapting scheduling for tasks with dependencies in stochastic environments

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Riakotakis, I en
dc.contributor.author Ciorba, FM en
dc.contributor.author Andronikos, T en
dc.contributor.author Papakonstantinou, G en
dc.date.accessioned 2014-03-01T02:44:11Z
dc.date.available 2014-03-01T02:44:11Z
dc.date.issued 2006 en
dc.identifier.issn 15525244 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31739
dc.subject Dynamic algorithms en
dc.subject Load balancing en
dc.subject Loops with dependencies en
dc.subject Stochastic environments en
dc.subject.other Boolean functions en
dc.subject.other DC motors en
dc.subject.other Dynamic programming en
dc.subject.other Loads (forces) en
dc.subject.other Parallel processing systems en
dc.subject.other Scheduling en
dc.subject.other Stochastic programming en
dc.subject.other Synthetic aperture sonar en
dc.subject.other Cluster computing en
dc.subject.other Dynamic load balancing algorithms en
dc.subject.other Experimental results en
dc.subject.other Heterogeneous clusters en
dc.subject.other In order en
dc.subject.other Inter-arrival times en
dc.subject.other international conferences en
dc.subject.other Life times en
dc.subject.other Load Balancing en
dc.subject.other Load patterns en
dc.subject.other Nested loops en
dc.subject.other paper addresses en
dc.subject.other parallel applications en
dc.subject.other Self-adapting en
dc.subject.other Self-scheduling en
dc.subject.other Stochastic environments en
dc.subject.other Stochastic processing en
dc.subject.other Scheduling algorithms en
dc.title Self-adapting scheduling for tasks with dependencies in stochastic environments en
heal.type conferenceItem en
heal.identifier.primary 10.1109/CLUSTR.2006.311912 en
heal.identifier.secondary 4100418 en
heal.identifier.secondary http://dx.doi.org/10.1109/CLUSTR.2006.311912 en
heal.publicationDate 2006 en
heal.abstract This paper addresses dynamic load balancing algorithms for non-dedicated heterogeneous clusters of workstations. We propose an algorithm called Self-Adapting Scheduling (SAS), targeted at nested loops with dependencies in a stochastic environment. This means that the load entering the system, not belonging to the parallel application under execution, follows an unpredictable pattern which can be modeled by a stochastic process. SAS takes into account the history of previous timing results and the load patterns in order to make accurate load balancing predictions. We study the performance of SAS in comparison with DTSS. We established in previous work that DTSS is the most efficient self-scheduling algorithm for loops with dependencies on heterogeneous clusters. We test our algorithm under the assumption that the interarrival times and life-times of incoming jobs are exponentially distributed. The experimental results show that SAS significantly outperforms DTSS especially with rapidly varying loads. © 2006 IEEE. en
heal.journalName Proceedings - IEEE International Conference on Cluster Computing, ICCC en
dc.identifier.doi 10.1109/CLUSTR.2006.311912 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής