HEAL DSpace

SF-HME system: A hierarchical mixtures-of-experts classification system for spam filtering

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Belsis, P en
dc.contributor.author Fragos, K en
dc.contributor.author Gritzalis, S en
dc.contributor.author Skourlas, C en
dc.date.accessioned 2014-03-01T02:44:11Z
dc.date.available 2014-03-01T02:44:11Z
dc.date.issued 2006 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31740
dc.subject Hierarchical systems of experts en
dc.subject Machine learning en
dc.subject Spam mail en
dc.subject.other Adaptive filtering en
dc.subject.other Algorithms en
dc.subject.other Classification (of information) en
dc.subject.other Electronic mail en
dc.subject.other Learning systems en
dc.subject.other Text processing en
dc.subject.other Hierarchical Mixture of Experts system en
dc.subject.other Hierarchical systems of experts en
dc.subject.other Nonlinear relationships en
dc.subject.other Spam mail en
dc.subject.other Hierarchical systems en
dc.title SF-HME system: A hierarchical mixtures-of-experts classification system for spam filtering en
heal.type conferenceItem en
heal.identifier.primary 10.1145/1141277.1141360 en
heal.identifier.secondary http://dx.doi.org/10.1145/1141277.1141360 en
heal.publicationDate 2006 en
heal.abstract Many linear statistical models have been lately proposed in text classification related literature and evaluated against the Unsolicited Bulk Email filtering problem. Despite their popularity - due both to their simplicity and relative ease of interpretation -the non-linearity assumption of data samples is inappropriate in practice, due to its inability to capture the apparent non-linear relationships, which characterize these samples. In this paper, we propose the SF-HME, a Hierarchical Mixture-of-Experts system, attempting to overcome limitations common to other machinelearning based approaches when applied to spam mail classification. By reducing the dimensionality of data through the usage of the effective Simba algorithm for feature selection, we evaluated our SF-HME system with a publicly available corpus of emails, with very high similarity between legitimate and bulk email - and thus low discriminative potential - where the traditional rule based filtering approaches achieve considerable lower degrees of precision. As a result, we confirm the domination of our SF-HME method against other machine learning approaches, which appeared to present lesser degree of recall. Copyright 2006 ACM. en
heal.journalName Proceedings of the ACM Symposium on Applied Computing en
dc.identifier.doi 10.1145/1141277.1141360 en
dc.identifier.volume 1 en
dc.identifier.spage 354 en
dc.identifier.epage 360 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής