HEAL DSpace

Study on preprocessing and classifying mass spectral raw data concerning human normal and disease cases

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Floros, XE en
dc.contributor.author Spyrou, GM en
dc.contributor.author Vougas, KN en
dc.contributor.author Tsangaris, GT en
dc.contributor.author Nikita, KS en
dc.date.accessioned 2014-03-01T02:44:12Z
dc.date.available 2014-03-01T02:44:12Z
dc.date.issued 2006 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31748
dc.subject Biomarkers en
dc.subject Classification en
dc.subject Early diagnosis en
dc.subject Feature extraction en
dc.subject Mass spectra preprocessing en
dc.subject Ovarian cancer en
dc.subject.other Acoustic noise en
dc.subject.other Algorithms en
dc.subject.other Biomarkers en
dc.subject.other Feature extraction en
dc.subject.other Mass spectrometry en
dc.subject.other Plasma (human) en
dc.subject.other Redundancy en
dc.subject.other Support vector machines en
dc.subject.other Tissue engineering en
dc.subject.other Wavelet transforms en
dc.subject.other Biological fluids en
dc.subject.other Ovarian cancer en
dc.subject.other Shift-Invariant Discrete Wavelet Transform (SIDWT) en
dc.subject.other Biological systems en
dc.title Study on preprocessing and classifying mass spectral raw data concerning human normal and disease cases en
heal.type conferenceItem en
heal.identifier.primary 10.1007/11946465_35 en
heal.identifier.secondary http://dx.doi.org/10.1007/11946465_35 en
heal.publicationDate 2006 en
heal.abstract Mass spectrometry is becoming an important tool in biological sciences. Tissue samples or easily obtained biological fluids (serum, plasma, urine) are analysed by a variety of mass spectrometry methods, producing spectra characterized by very high dimensionality and a high level of noise. Here we address a feature exraction method for mass spectra which consists of two main steps : In the first step an algorithm for low level preprocessing of mass spectra is applied, including denoising with the Shift-Invariant Discrete Wavelet Transform (SIDWT), smoothing, baseline correction, peak detection and normalization of the resulting peak-lists. After this step, we claim to have reduced dimensionality and redundancy of the initial mass spectra representation while keeping all the meaningful features (potential biomarkers) required for disease related proteomic patterns to be identified. In the second step, the peak-lists are alligned and fed to a Support Vector Machine (SVM) which classifies the mass spectra. This procedure was applied to SELDI-QqTOF spectral data collected from normal and ovarian cancer serum samples. The classification performance was assessed for distinct values of the parameters involved in the feature extraction pipeline. The method described here for low-level preprocessing of mass spectra results in 98.3% sensitivity, 98.3% specificity and an AUC (Area Under Curve) of 0.981 in spectra classification. © Springer-Verlag Berlin Heidelberg 2006. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/11946465_35 en
dc.identifier.volume 4345 LNBI en
dc.identifier.spage 390 en
dc.identifier.epage 401 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής