HEAL DSpace

Teleoperation of a robot arm in 2D catching movements using EMG signals and a bio-inspired motion law

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Artemiadis, PK en
dc.contributor.author Kyriakopoulos, KJ en
dc.date.accessioned 2014-03-01T02:44:12Z
dc.date.available 2014-03-01T02:44:12Z
dc.date.issued 2006 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31751
dc.subject Auto-regressive model en
dc.subject Electromyographic (EMG) signal en
dc.subject Robot teleoperation en
dc.subject.other Electromyography en
dc.subject.other Joints (anatomy) en
dc.subject.other Motion estimation en
dc.subject.other Physiological models en
dc.subject.other Signal encoding en
dc.subject.other Tracking (position) en
dc.subject.other Auto-regressive moving average with exogenous output (ARMAX) models en
dc.subject.other Electromyographic (EMG) signals en
dc.subject.other Joint angle estimation en
dc.subject.other Robot teleoperations en
dc.subject.other Robotic arms en
dc.title Teleoperation of a robot arm in 2D catching movements using EMG signals and a bio-inspired motion law en
heal.type conferenceItem en
heal.identifier.primary 10.1109/BIOROB.2006.1639057 en
heal.identifier.secondary http://dx.doi.org/10.1109/BIOROB.2006.1639057 en
heal.identifier.secondary 1639057 en
heal.publicationDate 2006 en
heal.abstract This paper presents a methodology of robot arm teleoperation, using electromyographic (EMG) signals and a bio-inspired motion law. The methodology is implemented in planar catching movements, in situations that the user reaches and grasps objects lying on a table in front of him. EMG signals from the flexor and extensor muscles of both the elbow and the wrist joint are used to predict the elbow and wrist joint angle. This is done by using two auto-regressive moving average with exogenous output (ARMAX) models, one for each joint. A position tracker is attached in the user's upper arm, before the elbow joint, and is used for the application of the bio-inspired motion law. This law states that the trajectory of the human hand during planar reaching tasks lays on a straight line. Thus, by applying this motion law at the predicted hand trajectory, the errors of the joint angle estimation through the ARMAX model are reduced. The grasping intention of the user, after reaching the target is decoded through a discrimination algorithm based on feature extraction of the EMG signals from the forearm. The experimental results show that the two ARMAX model estimations for the joint angles, in conjunction with the motion law, are able to predict the user's motion with high accuracy, within different target points and various movement velocities. en
heal.journalName Proceedings of the First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006, BioRob 2006 en
dc.identifier.doi 10.1109/BIOROB.2006.1639057 en
dc.identifier.volume 2006 en
dc.identifier.spage 41 en
dc.identifier.epage 46 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής