HEAL DSpace

The complexity of counting functions with easy decision version

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Pagourtzis, A en
dc.contributor.author Zachos, S en
dc.date.accessioned 2014-03-01T02:44:12Z
dc.date.available 2014-03-01T02:44:12Z
dc.date.issued 2006 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31755
dc.subject Complexity Class en
dc.subject Counting Function en
dc.subject Perfect Match en
dc.subject Polynomial Time en
dc.subject Structural Properties en
dc.subject turing machine en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Complexity class en
dc.subject.other Computation paths en
dc.subject.other Counting problems en
dc.subject.other Computation theory en
dc.subject.other Computational complexity en
dc.subject.other Polynomials en
dc.subject.other Problem solving en
dc.subject.other Turing machines en
dc.subject.other Functions en
dc.title The complexity of counting functions with easy decision version en
heal.type conferenceItem en
heal.identifier.primary 10.1007/11821069_64 en
heal.identifier.secondary http://dx.doi.org/10.1007/11821069_64 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract We investigate the complexity of counting problems that belong to the complexity class #P and have an easy decision version. These problems constitute the class #PE which has some well-known representatives such as #PERFECT MATCHINGS, #DNF-SAT, and NONNEGATIVE PERMANENT. An important property of these problems is that they are all #P-complete, in the Cook sense, while they cannot be #P-complete in the Karp sense unless P = NP. We study these problems in respect to the complexity class TotP, which contains functions that count the number of all paths of a PNTM. We first compare TotP to #P and #PE and show that FP ⊆ TotP ⊆ #PE ⊆ #P and that the inclusions are proper unless P = NP. We then show that several natural #PE problems -including the ones mentioned above -belong to TotP. Moreover, we prove that TotP is exactly the Karp closure of self-reducible functions of #PE. Therefore, all these problems share a remarkable structural property: for each of them there exists a polynomial-time nondeterministic Turing machine which has as many computation paths as the output value. © Springer-Verlag Berlin Heidelberg 2006. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/11821069_64 en
dc.identifier.isi ISI:000240271700064 en
dc.identifier.volume 4162 LNCS en
dc.identifier.spage 741 en
dc.identifier.epage 752 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής