dc.contributor.author |
Pagourtzis, A |
en |
dc.contributor.author |
Zachos, S |
en |
dc.date.accessioned |
2014-03-01T02:44:12Z |
|
dc.date.available |
2014-03-01T02:44:12Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0302-9743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31755 |
|
dc.subject |
Complexity Class |
en |
dc.subject |
Counting Function |
en |
dc.subject |
Perfect Match |
en |
dc.subject |
Polynomial Time |
en |
dc.subject |
Structural Properties |
en |
dc.subject |
turing machine |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.other |
Complexity class |
en |
dc.subject.other |
Computation paths |
en |
dc.subject.other |
Counting problems |
en |
dc.subject.other |
Computation theory |
en |
dc.subject.other |
Computational complexity |
en |
dc.subject.other |
Polynomials |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Turing machines |
en |
dc.subject.other |
Functions |
en |
dc.title |
The complexity of counting functions with easy decision version |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/11821069_64 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/11821069_64 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
We investigate the complexity of counting problems that belong to the complexity class #P and have an easy decision version. These problems constitute the class #PE which has some well-known representatives such as #PERFECT MATCHINGS, #DNF-SAT, and NONNEGATIVE PERMANENT. An important property of these problems is that they are all #P-complete, in the Cook sense, while they cannot be #P-complete in the Karp sense unless P = NP. We study these problems in respect to the complexity class TotP, which contains functions that count the number of all paths of a PNTM. We first compare TotP to #P and #PE and show that FP ⊆ TotP ⊆ #PE ⊆ #P and that the inclusions are proper unless P = NP. We then show that several natural #PE problems -including the ones mentioned above -belong to TotP. Moreover, we prove that TotP is exactly the Karp closure of self-reducible functions of #PE. Therefore, all these problems share a remarkable structural property: for each of them there exists a polynomial-time nondeterministic Turing machine which has as many computation paths as the output value. © Springer-Verlag Berlin Heidelberg 2006. |
en |
heal.publisher |
SPRINGER-VERLAG BERLIN |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
heal.bookName |
LECTURE NOTES IN COMPUTER SCIENCE |
en |
dc.identifier.doi |
10.1007/11821069_64 |
en |
dc.identifier.isi |
ISI:000240271700064 |
en |
dc.identifier.volume |
4162 LNCS |
en |
dc.identifier.spage |
741 |
en |
dc.identifier.epage |
752 |
en |