dc.contributor.author |
Dimarogonas, DV |
en |
dc.contributor.author |
Kyriakopoulos, KJ |
en |
dc.contributor.author |
Theodorakatos, D |
en |
dc.date.accessioned |
2014-03-01T02:44:19Z |
|
dc.date.available |
2014-03-01T02:44:19Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
10504729 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31761 |
|
dc.subject |
Collision Avoidance |
en |
dc.subject |
Feedback Control |
en |
dc.subject |
Hybrid System |
en |
dc.subject |
Large Scale |
en |
dc.subject |
lyapunov stability |
en |
dc.subject |
Motion Control |
en |
dc.subject |
Multi Agent System |
en |
dc.subject.other |
Collision avoidance |
en |
dc.subject.other |
Decentralized control |
en |
dc.subject.other |
Distributed parameter control systems |
en |
dc.subject.other |
Feedback |
en |
dc.subject.other |
Lyapunov methods |
en |
dc.subject.other |
Motion control |
en |
dc.subject.other |
Spheres |
en |
dc.subject.other |
Communication restrictions |
en |
dc.subject.other |
Decentralized Navigation Functions |
en |
dc.subject.other |
Distributed motion control |
en |
dc.subject.other |
Holonomic agents |
en |
dc.subject.other |
Multi agent systems |
en |
dc.title |
Totally distributed motion control of sphere world multi-agent systems using Decentralized Navigation Functions |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ROBOT.2006.1642066 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ROBOT.2006.1642066 |
en |
heal.identifier.secondary |
1642066 |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
A distributed feedback control architecture that guarantees collision avoidance and destination convergence for multiple sphere world holonomic agents is presented. The well established tool of Decentralized Navigation Functions is redefined to cope with the communication restrictions of the system. Each agent plans its actions without knowing the destinations of the others and the positions of those agents lying outside its sensing neighborhood. The stability properties of the closed loop system are checked via Lyapunov stability techniques for hybrid systems. The collision avoidance and goal convergence properties are verified through simulations. The key advantage of the proposed algorithm with respect to the previous ones is the significant decrease of computational load and its applicability to large scale groups. © 2006 IEEE. |
en |
heal.journalName |
Proceedings - IEEE International Conference on Robotics and Automation |
en |
dc.identifier.doi |
10.1109/ROBOT.2006.1642066 |
en |
dc.identifier.volume |
2006 |
en |
dc.identifier.spage |
2430 |
en |
dc.identifier.epage |
2435 |
en |