HEAL DSpace

Towards successful automated negotiations based on Neural Networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papaioannou, IV en
dc.contributor.author Roussaki, IG en
dc.contributor.author Anagnostou, ME en
dc.date.accessioned 2014-03-01T02:44:21Z
dc.date.available 2014-03-01T02:44:21Z
dc.date.issued 2006 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31763
dc.subject Automated Negotiation en
dc.subject E Commerce en
dc.subject Empirical Evaluation en
dc.subject Intelligent Agent en
dc.subject Mobile Agent en
dc.subject Numerical Experiment en
dc.subject Process Capability en
dc.subject Profitability en
dc.subject Neural Network en
dc.subject.other Electronic commerce en
dc.subject.other Information services en
dc.subject.other Intelligent agents en
dc.subject.other Learning systems en
dc.subject.other Mobile agents en
dc.subject.other E-business domain en
dc.subject.other E-commerce channels en
dc.subject.other Remote communication en
dc.subject.other Neural networks en
dc.title Towards successful automated negotiations based on Neural Networks en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICIS-COMSAR.2006.84 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICIS-COMSAR.2006.84 en
heal.identifier.secondary 1652034 en
heal.publicationDate 2006 en
heal.abstract Mobile intelligent agents may assist the rapid and wide market penetration of services and products offered via e-commerce channels, as they improve the performance and sophistication of systems in the e-business domain. In this framework, the design and evaluation of agents handling automated negotiations on behalf of their human or corporate owners is a challenging research field. This paper proposes to enhance such agents with learning techniques, in order to achieve more profitable results for the parties they represent. As mobile agents have reduced processing capabilities and have to remotely communicate with their peers or migrate to foreign network nodes, the learning mechanisms they employ should require minimal resources. The proposed learning technique is based on neural networks (NNs) and is quite lightweight. It aims to reduce the cases of unsuccessful negotiations and maximize the client's utility. The designed NN-assisted negotiation strategy1 has been empirically evaluated via numerous experiments. © 2006 IEEE. en
heal.journalName Proceedings - 5th IEEE/ACIS Int. Conf. on Comput. and Info. Sci., ICIS 2006. In conjunction with 1st IEEE/ACIS, Int. Workshop Component-Based Software Eng., Softw. Archi. and Reuse, COMSAR 2006 en
dc.identifier.doi 10.1109/ICIS-COMSAR.2006.84 en
dc.identifier.volume 2006 en
dc.identifier.spage 464 en
dc.identifier.epage 471 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής