HEAL DSpace

Video object watermarking based on moments

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tzouveli, PK en
dc.contributor.author Ntalianis, KS en
dc.contributor.author Kollias, SD en
dc.date.accessioned 2014-03-01T02:44:21Z
dc.date.available 2014-03-01T02:44:21Z
dc.date.issued 2006 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31773
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Copyrights en
dc.subject.other Digital watermarking en
dc.subject.other Estimation en
dc.subject.other Functions en
dc.subject.other Pattern recognition en
dc.subject.other Robustness (control systems) en
dc.subject.other Human video object detectors en
dc.subject.other Video object authentication en
dc.subject.other Video object watermarking en
dc.subject.other Neural networks en
dc.title Video object watermarking based on moments en
heal.type conferenceItem en
heal.identifier.primary 10.1007/11738695_10 en
heal.identifier.secondary http://dx.doi.org/10.1007/11738695_10 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract A robust video object based watermarking scheme, based on Zernike and Hu moments, is proposed in this paper. Firstly, a human video object detector is applied to the initial image. Zernike and the Hu moments of each human video object are estimated and an invariant function for watermarking is incorporated. Then, the watermark is generated modifying the moment values of each human video object. In the detection scheme, a neural network classifier is initially used in order to extract possible watermarked human video objects from each received input image. Then, a watermark detection procedure is applied for video object authentication. A full experiment confirms the promising performance of the proposed scheme. Furthermore, the performances of the two types of moments are extensively investigated under several attacks, verifying the robustness of Zernike moments comparing to Hu moments. © Springer-Verlag Berlin Heidelberg 2006. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/11738695_10 en
dc.identifier.isi ISI:000238283100010 en
dc.identifier.volume 3893 LNCS en
dc.identifier.spage 68 en
dc.identifier.epage 75 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής