dc.contributor.author |
Chatzis, S |
en |
dc.contributor.author |
Doulamis, A |
en |
dc.contributor.author |
Kosmopoulos, D |
en |
dc.contributor.author |
Varvarigou, T |
en |
dc.date.accessioned |
2014-03-01T02:44:22Z |
|
dc.date.available |
2014-03-01T02:44:22Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0302-9743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31774 |
|
dc.subject |
ARVQ |
en |
dc.subject |
Graph Matching |
en |
dc.subject |
Machine Learning |
en |
dc.subject |
Region |
en |
dc.subject |
Spatio-Temporal |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.other |
ARVQ |
en |
dc.subject.other |
Graph Matching |
en |
dc.subject.other |
Spatio Temporal |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Graph theory |
en |
dc.subject.other |
Learning systems |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Video cameras |
en |
dc.title |
Video representation and retrieval using spatio-temporal descriptors and region relations |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/11840930_10 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/11840930_10 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
This paper describes a novel methodology for video summarization and representation. The video shots are processed in space-time as 3D volumes of pixels. Pixel regions with consistent color and motion properties are extracted from these 3D volumes by a space-time segmentation technique based on a novel machine learning algorithm. Each region is then described by a high-dimensional point whose components represent the average position, motion velocity and color of the region. Subsequently, the spatio-temporal relations of the regions are deduced and a concise, graph-based description of them is generated. This graph-based description of the video shot's content, along with the region centroids, comprises a concise yet powerful description of the video-shot and is used for retrieval applications. The retrieval problem is formulated as an inexact graph matching problem between the data video shots and the query input which is also a video segment. Experimental results on action recognition and video retrieval are illustrated and discussed. © Springer-Verlag Berlin Heidelberg 2006. |
en |
heal.publisher |
SPRINGER-VERLAG BERLIN |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
heal.bookName |
LECTURE NOTES IN COMPUTER SCIENCE |
en |
dc.identifier.doi |
10.1007/11840930_10 |
en |
dc.identifier.isi |
ISI:000241475200010 |
en |
dc.identifier.volume |
4132 LNCS - II |
en |
dc.identifier.spage |
94 |
en |
dc.identifier.epage |
103 |
en |