HEAL DSpace

Visual pathways for detection of landmark points

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Raftopoulos, K en
dc.contributor.author Papadakis, N en
dc.contributor.author Ntalianis, K en
dc.date.accessioned 2014-03-01T02:44:22Z
dc.date.available 2014-03-01T02:44:22Z
dc.date.issued 2006 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31776
dc.subject Curvature detection en
dc.subject Landmark points en
dc.subject Shape encoding en
dc.subject Visual cortex en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Curvature detection en
dc.subject.other Landmark points en
dc.subject.other Shape encoding en
dc.subject.other Visual cortex en
dc.subject.other Cell culture en
dc.subject.other Computer hardware en
dc.subject.other Mathematical models en
dc.subject.other Multilayer neural networks en
dc.title Visual pathways for detection of landmark points en
heal.type conferenceItem en
heal.identifier.primary 10.1007/11840817_76 en
heal.identifier.secondary http://dx.doi.org/10.1007/11840817_76 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract We describe a neuron multi-layered architecture that extracts landmark points of high curvature from 2d shapes and resembles the visual pathway of primates. We demonstrate how the rotated orientation specific receptive fields of the simple neurons that were discovered by Hubel and Wiesel can perform landmark point detection on the 2d contour of the shape that is projected on the retina of the eye. Detection of landmark points of high curvature is a trivial task with sophisticated machine equipment but we demonstrate how such a task can be accomplished by only using the hardware of the visual cortex of primates abiding to the discoveries of Hubel and Wiesel regarding the rotated arrangements of orientation specific simple neurons. The proposed layered architecture first extracts the 2dimensional shape from the projection on the retina then it rotates the extracted shape in multiple layers in order to detect the landmark points. Since rotating the image about the focal origin is equivalent to the rotation of the simple cells orientation field, our model offers an explanation regarding the mystery of the arrangement of the cortical cells in the areas of layer 2 and 3 on the basis of shape cognition from its landmark points. © Springer-Verlag Berlin Heidelberg 2006. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/11840817_76 en
dc.identifier.isi ISI:000241472100076 en
dc.identifier.volume 4131 LNCS - I en
dc.identifier.spage 728 en
dc.identifier.epage 739 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής