HEAL DSpace

Wavelet based estimation of saliency maps in visual attention algorithms

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsapatsoulis, N en
dc.contributor.author Rapantzikos, K en
dc.date.accessioned 2014-03-01T02:44:22Z
dc.date.available 2014-03-01T02:44:22Z
dc.date.issued 2006 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31779
dc.subject Perceptual video coding en
dc.subject Saliency maps en
dc.subject Visual attention en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Perceptual video coding en
dc.subject.other Saliency maps en
dc.subject.other Topographic feature maps en
dc.subject.other Visual attention en
dc.subject.other Algorithms en
dc.subject.other Computational complexity en
dc.subject.other Computational methods en
dc.subject.other Conformal mapping en
dc.subject.other Integration en
dc.subject.other Mathematical models en
dc.subject.other Visualization en
dc.subject.other Wavelet transforms en
dc.title Wavelet based estimation of saliency maps in visual attention algorithms en
heal.type conferenceItem en
heal.identifier.primary 10.1007/11840930_56 en
heal.identifier.secondary http://dx.doi.org/10.1007/11840930_56 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract This paper deals with the problem of saliency map estimation in computational models of visual attention. In particular, we propose a wavelet based approach for efficient computation of the topographic feature maps. Given that wavelets and multiresolution theory are naturally connected the usage of wavelet decomposition for mimicking the center surround process in humans is an obvious choice. However, our proposal goes further. We utilize the wavelet decomposition for inline computation of the features (such as orientation) that are used to create the topographic feature maps. Topographic feature maps are then combined through a sigmoid function to produce the final saliency map. The computational model we use is based on the Feature Integration Theory of Treisman et al and follows the computational philosophy of this theory proposed by Itti et al. A series of experiments, conducted in a video encoding setup, show that the proposed method compares well against other implementations found in the literature both in terms of visual trials and computational complexity. © Springer-Verlag Berlin Heidelberg 2006. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/11840930_56 en
dc.identifier.isi ISI:000241475200056 en
dc.identifier.volume 4132 LNCS - II en
dc.identifier.spage 538 en
dc.identifier.epage 547 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής