HEAL DSpace

A content-based image retrieval scheme allowing for robust automatic personalization

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chatzis, S en
dc.contributor.author Doulamis, A en
dc.contributor.author Varvarigou, T en
dc.date.accessioned 2014-03-01T02:44:22Z
dc.date.available 2014-03-01T02:44:22Z
dc.date.issued 2007 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31785
dc.subject Mixture models en
dc.subject Personalization en
dc.subject T distributions en
dc.subject.other Feedback en
dc.subject.other Robust control en
dc.subject.other Semantics en
dc.subject.other Sensory perception en
dc.subject.other User interfaces en
dc.subject.other Content based image retrieval systems en
dc.subject.other Human perception en
dc.subject.other Mixture models en
dc.subject.other Relevance feedback en
dc.subject.other Robust automatic personalization en
dc.subject.other Content based retrieval en
dc.title A content-based image retrieval scheme allowing for robust automatic personalization en
heal.type conferenceItem en
heal.identifier.primary 10.1145/1282280.1282281 en
heal.identifier.secondary http://dx.doi.org/10.1145/1282280.1282281 en
heal.publicationDate 2007 en
heal.abstract The retrieval performance of content-based image retrieval (CBIR) systems is often disappointingly low, mainly due to the subjectivity of human perception. Relevance feedback (RF) has been widely considered as a powerful tool to enhance CBIR systems by incorporating human perception subjectivity into the retrieval procedure. However, usually, the obtained feedback logs are scarce and contain lots of outliers, undermining the RF adaptation effectiveness. In this paper, we tackle these shortcomings exploiting the inherent outlier downweighting capabilities mixtures of Student's t distributions offer. Each semantic class is modeled by a mixture of t distributions fitted to data provided by the system operators. Further, the semantic class models get personalized by application of a novel, efficient RF algorithm allowing for the robust adaptation of the semantic class models to the accumulated feedback of each user. The efficacy of our approach is validated through a series of experiments using objective performance criteria. Copyright 2007 ACM. en
heal.journalName Proceedings of the 6th ACM International Conference on Image and Video Retrieval, CIVR 2007 en
dc.identifier.doi 10.1145/1282280.1282281 en
dc.identifier.spage 1 en
dc.identifier.epage 8 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής