HEAL DSpace

A fast parallel algorithm for frequent itemsets mining

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Souliou, D en
dc.contributor.author Pagourtzis, A en
dc.contributor.author Tsanakas, P en
dc.date.accessioned 2014-03-01T02:44:22Z
dc.date.available 2014-03-01T02:44:22Z
dc.date.issued 2007 en
dc.identifier.issn 15715736 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31786
dc.subject Association rules en
dc.subject Frequent itemsets en
dc.subject Parallel data mining en
dc.subject Partial support tree en
dc.subject Set-enumeration tree en
dc.title A fast parallel algorithm for frequent itemsets mining en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-0-387-74161-1_23 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-0-387-74161-1_23 en
heal.publicationDate 2007 en
heal.abstract Mining frequent itemsets from large databases is an important computational task with a lot of applications. The most known among them is the market-basket problem which assumes that we have a large number of items and we want to know which items are bought together. A recent application is that of web pages (baskets) and linked pages (items). Pages with many common references may be about the same topic. In this paper we present a parallel algorithm for mining frequent itemsets. We provide experimental evidence that our algorithm scales quite well and we discuss the merits of parallelization for this problem. © 2007 International Federation for Information Processing. en
heal.journalName IFIP International Federation for Information Processing en
dc.identifier.doi 10.1007/978-0-387-74161-1_23 en
dc.identifier.volume 247 en
dc.identifier.spage 213 en
dc.identifier.epage 220 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής