dc.contributor.author |
Souliou, D |
en |
dc.contributor.author |
Pagourtzis, A |
en |
dc.contributor.author |
Tsanakas, P |
en |
dc.date.accessioned |
2014-03-01T02:44:22Z |
|
dc.date.available |
2014-03-01T02:44:22Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
15715736 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31786 |
|
dc.subject |
Association rules |
en |
dc.subject |
Frequent itemsets |
en |
dc.subject |
Parallel data mining |
en |
dc.subject |
Partial support tree |
en |
dc.subject |
Set-enumeration tree |
en |
dc.title |
A fast parallel algorithm for frequent itemsets mining |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-0-387-74161-1_23 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-0-387-74161-1_23 |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
Mining frequent itemsets from large databases is an important computational task with a lot of applications. The most known among them is the market-basket problem which assumes that we have a large number of items and we want to know which items are bought together. A recent application is that of web pages (baskets) and linked pages (items). Pages with many common references may be about the same topic. In this paper we present a parallel algorithm for mining frequent itemsets. We provide experimental evidence that our algorithm scales quite well and we discuss the merits of parallelization for this problem. © 2007 International Federation for Information Processing. |
en |
heal.journalName |
IFIP International Federation for Information Processing |
en |
dc.identifier.doi |
10.1007/978-0-387-74161-1_23 |
en |
dc.identifier.volume |
247 |
en |
dc.identifier.spage |
213 |
en |
dc.identifier.epage |
220 |
en |