HEAL DSpace

A visual pathway for shape-based invariant classification of gray scale images

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Raftopoulos, KA en
dc.contributor.author Papadakis, N en
dc.contributor.author Ntalianis, K en
dc.contributor.author Kollias, S en
dc.date.accessioned 2014-03-01T02:44:25Z
dc.date.available 2014-03-01T02:44:25Z
dc.date.issued 2007 en
dc.identifier.issn 1069-2509 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31811
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-34547736001&partnerID=40&md5=17091824af2c043402262f83c1cd98a7 en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.other Image analysis en
dc.subject.other Image coding en
dc.subject.other Neural networks en
dc.subject.other Neurons en
dc.subject.other Pattern recognition en
dc.subject.other Vision en
dc.subject.other Gray scale images en
dc.subject.other Orientation specific receptive fields en
dc.subject.other Shape-based invariant classification en
dc.subject.other Underlying contour en
dc.subject.other Classification (of information) en
dc.title A visual pathway for shape-based invariant classification of gray scale images en
heal.type conferenceItem en
heal.language English en
heal.publicationDate 2007 en
heal.abstract Inspired by the rotated orientation specific receptive fields of the simple neurons that were discovered by Hubel and Wiesel we describe a multi-layered neural architecture for calculating the local curvature at each point of a planar shape without extracting the underlying contour. Our architecture resembles the visual pathway of primates as we demonstrate how the rotated orientation specific receptive fields of the simple neurons can perform local curvature calculation of the planar shape that is projected on the retina of the eye. We then use the same method to encode planar curvature into the intensity of gray scale images and we demonstrate the effectiveness of this encoding by proposing a shape-based triple correlation invariant image classification scheme. We present experimental results illustrating that by encoding planar curvature into the intensity values we improve the recognition capability of multi layered neural network classifiers without imposing additional complexity to the learning process. © 2007 - IOS Press and the author(s). All rights reserved. en
heal.publisher IOS PRESS en
heal.journalName Integrated Computer-Aided Engineering en
dc.identifier.isi ISI:000248835600007 en
dc.identifier.volume 14 en
dc.identifier.issue 4 en
dc.identifier.spage 365 en
dc.identifier.epage 378 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής