dc.contributor.author |
Ouranos, I |
en |
dc.contributor.author |
Stefaneas, P |
en |
dc.contributor.author |
Frangos, P |
en |
dc.date.accessioned |
2014-03-01T02:44:25Z |
|
dc.date.available |
2014-03-01T02:44:25Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0916-8508 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31821 |
|
dc.subject |
Algebraic specification |
en |
dc.subject |
CafeOBJ |
en |
dc.subject |
Formal verification |
en |
dc.subject |
Mobile computing |
en |
dc.subject |
MobileOBJ |
en |
dc.subject |
Observational Transition Systems |
en |
dc.subject.classification |
Computer Science, Hardware & Architecture |
en |
dc.subject.classification |
Computer Science, Information Systems |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Algebraic specification |
en |
dc.subject.other |
CafeOBJ |
en |
dc.subject.other |
Formal verification |
en |
dc.subject.other |
MobileOBJ |
en |
dc.subject.other |
Observational Transition Systems |
en |
dc.subject.other |
Algebra |
en |
dc.subject.other |
Computer science |
en |
dc.subject.other |
Computer systems |
en |
dc.subject.other |
Formal logic |
en |
dc.subject.other |
Specification languages |
en |
dc.subject.other |
Specifications |
en |
dc.subject.other |
Theorem proving |
en |
dc.subject.other |
Mobile computing |
en |
dc.title |
An algebraic framework for modeling of Mobile systems |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1093/ietfec/e90-a.9.1986 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1093/ietfec/e90-a.9.1986 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
We present Mobile OBJ, a formal framework for specifying and verifying mobile systems. Based on hidden algebra, the components of a mobile system are specified as behavioral objects or Observational Transition Systems, a kind of transition system, enriched with special action and observation operators related to the distinct characteristics of mobile computing systems. The whole system comes up as the concurrent composition of these components. The implementation of the abstract model is achieved using CafeOBJ, an executable, industrial strength algebraic specification language. The visualization of the specification can be done using CafeOBJ graphical notation. In addition, invariant and behavioral properties of mobile systems can be proved through theorem proving techniques, such as structural induction and coinduction that are fully supported by the CafeOBJ system. The application of the proposed framework is presented through the modeling of a mobile computing environment and the services that need to be supported by the former. Copyright © 2007 The Institute of Electronics, Information and Communication Engineers. |
en |
heal.publisher |
IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG |
en |
heal.journalName |
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences |
en |
dc.identifier.doi |
10.1093/ietfec/e90-a.9.1986 |
en |
dc.identifier.isi |
ISI:000250093700032 |
en |
dc.identifier.volume |
E90-A |
en |
dc.identifier.issue |
9 |
en |
dc.identifier.spage |
1986 |
en |
dc.identifier.epage |
1999 |
en |