HEAL DSpace

An efficient non-linear Kalman filtering algorithm using simultaneous perturbation and applications in traffic estimation and prediction

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Antoniou, C en
dc.contributor.author Koutsopoulos, HN en
dc.contributor.author Yannis, G en
dc.date.accessioned 2014-03-01T02:44:25Z
dc.date.available 2014-03-01T02:44:25Z
dc.date.issued 2007 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31824
dc.subject Dynamic Model en
dc.subject extended kalman filter en
dc.subject Finite Difference en
dc.subject Simultaneous Perturbation en
dc.subject kalman filter en
dc.subject.other Empirical results en
dc.subject.other Finite difference en
dc.subject.other Gradient approximation en
dc.subject.other Intelligent transportation systems en
dc.subject.other Kalman Filtering algorithms en
dc.subject.other Non-linear en
dc.subject.other Numerical derivatives en
dc.subject.other On-line calibrations en
dc.subject.other Simultaneous perturbation en
dc.subject.other Traffic dynamics en
dc.subject.other Traffic estimation en
dc.subject.other Approximation theory en
dc.subject.other Cellular radio systems en
dc.subject.other Control theory en
dc.subject.other Finite difference method en
dc.subject.other Gradient methods en
dc.subject.other Intelligent vehicle highway systems en
dc.subject.other Kalman filters en
dc.subject.other Numerical analysis en
dc.subject.other Perturbation techniques en
dc.subject.other Polynomial approximation en
dc.subject.other Vehicle locating systems en
dc.subject.other Wave filters en
dc.subject.other Intelligent systems en
dc.title An efficient non-linear Kalman filtering algorithm using simultaneous perturbation and applications in traffic estimation and prediction en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ITSC.2007.4357813 en
heal.identifier.secondary http://dx.doi.org/10.1109/ITSC.2007.4357813 en
heal.identifier.secondary 4357813 en
heal.publicationDate 2007 en
heal.abstract The Extended Kalman Filter, a well-established and straightforward extension of the Kalman filter, requires a computationally intensive linearization step. In this paper, the use of the simultaneous perturbation is proposed for the computation of the gradient in a far more efficient way than the usual numerical derivatives. The resulting algorithm is applied to the problem of on-line calibration of traffic dynamics models and empirical results are presented. The use of the simultaneous perturbation gradient approximation provides significant improvement over the base case, and comparable results to those obtained by the more computationally intensive finite difference gradient approximation. © 2007 IEEE. en
heal.journalName IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC en
dc.identifier.doi 10.1109/ITSC.2007.4357813 en
dc.identifier.spage 217 en
dc.identifier.epage 222 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής