HEAL DSpace

An insulin infusion advisory system for type 1 diabetes patients based on non-linear model predictive control methods

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Zarkogianni, K en
dc.contributor.author Mougiakakou, SG en
dc.contributor.author Prountzou, A en
dc.contributor.author Vazeou, A en
dc.contributor.author Bartsocas, CS en
dc.contributor.author Nikita, KS en
dc.date.accessioned 2014-03-01T02:44:26Z
dc.date.available 2014-03-01T02:44:26Z
dc.date.issued 2007 en
dc.identifier.issn 05891019 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31828
dc.subject compartmental model en
dc.subject Control Strategy en
dc.subject Hybrid Model en
dc.subject Kinetics en
dc.subject Mathematical Model en
dc.subject Non-linear Model en
dc.subject Predictive Control en
dc.subject Time Delay en
dc.subject type 1 diabetes en
dc.subject Continuous Subcutaneous Insulin Infusion en
dc.subject Neural Network en
dc.subject Real Time Recurrent Learning en
dc.subject.other Blood en
dc.subject.other Insulin en
dc.subject.other Mathematical models en
dc.subject.other Medical problems en
dc.subject.other Nonlinear analysis en
dc.subject.other Real time control en
dc.subject.other Glucose predictions en
dc.subject.other Multiple meal disturbances en
dc.subject.other Real Time Recurrent Learning (RTRL) en
dc.subject.other Patient monitoring en
dc.title An insulin infusion advisory system for type 1 diabetes patients based on non-linear model predictive control methods en
heal.type conferenceItem en
heal.identifier.primary 10.1109/IEMBS.2007.4353708 en
heal.identifier.secondary http://dx.doi.org/10.1109/IEMBS.2007.4353708 en
heal.identifier.secondary 4353708 en
heal.publicationDate 2007 en
heal.abstract In this paper, an Insulin Infusion Advisory System (IIAS) for Type 1 diabetes patients, which use insulin pumps for the Continuous Subcutaneous Insulin Infusion (CSII) is presented. The purpose of the system is to estimate the appropriate insulin infusion rates. The system is based on a Non-Linear Model Predictive Controller (NMPC) which uses a hybrid model. The model comprises a Compartmental Model (CM), which simulates the absorption of the glucose to the blood due to meal intakes, and a Neural Network (NN), which simulates the glucose-insulin kinetics. The NN is a Recurrent NN (RNN) trained with the Real Time Recurrent Learning (RTRL) algorithm. The output of the model consists of short term glucose predictions and provides input to the NMPC, in order for the latter to estimate the optimum insulin infusion rates. For the development and the evaluation of the IIAS, data generated from a Mathematical Model (MM) of a Type 1 diabetes patient have been used. The proposed control strategy is evaluated at multiple meal disturbances, various noise levels and additional time delays. The results indicate that the implemented HAS is capable of handling multiple meals, which correspond to realistic meal profiles, large noise levels and time delays. © 2007 IEEE. en
heal.journalName Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings en
dc.identifier.doi 10.1109/IEMBS.2007.4353708 en
dc.identifier.volume 2007 en
dc.identifier.spage 5971 en
dc.identifier.epage 5974 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής