HEAL DSpace

Approximate order-k Voronoi cells over positional streams

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Patroumpas, K en
dc.contributor.author Minogiannis, T en
dc.contributor.author Sellis, T en
dc.date.accessioned 2014-03-01T02:44:28Z
dc.date.available 2014-03-01T02:44:28Z
dc.date.issued 2007 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31840
dc.subject approximation en
dc.subject data streams en
dc.subject moving objects en
dc.subject nearest neighbors en
dc.subject Voronoi cell en
dc.subject.other approximation en
dc.subject.other Data stream en
dc.subject.other Moving objects en
dc.subject.other Nearest neighbors en
dc.subject.other Voronoi cell en
dc.subject.other Information systems en
dc.subject.other Membership functions en
dc.subject.other Query processing en
dc.subject.other Text processing en
dc.subject.other Geographic information systems en
dc.title Approximate order-k Voronoi cells over positional streams en
heal.type conferenceItem en
heal.identifier.primary 10.1145/1341012.1341059 en
heal.identifier.secondary http://dx.doi.org/10.1145/1341012.1341059 en
heal.publicationDate 2007 en
heal.abstract Handling streams of positional updates from numerous moving objects has become a challenging task for many monitoring applications. Several algorithms have been recently proposed for providing exact answers particularly to continuous range and k-nearest neighbor queries against current object positions. In this work, we introduce a processing technique for efficiently maintaining an approximate order-k Voronoi cell around a certain point of interest when all objects continuously change their locations. This heuristic can easily provide a fairly reliable estimate of the k-nearest neighbors for any query point found inside the constructed cell. We further extend our method to handle positional updates that are not received concurrently for all objects, but instead remain valid for a specific time interval according to a sliding window model. Extensive experimental analysis over synthetic datasets confirms the robustness and scalability of this approach offering near real-time cell maintenance with acceptable error margins. © 2007 ACM. en
heal.journalName GIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems en
dc.identifier.doi 10.1145/1341012.1341059 en
dc.identifier.spage 276 en
dc.identifier.epage 283 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής