HEAL DSpace

Artificial intelligence combined with hybrid FEM-BE techniques for global transformer optimization

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Amoiralis, EI en
dc.contributor.author Georgilakis, PS en
dc.contributor.author Kefalas, TD en
dc.contributor.author Tsili, MA en
dc.contributor.author Kladas, AG en
dc.date.accessioned 2014-03-01T02:44:28Z
dc.date.available 2014-03-01T02:44:28Z
dc.date.issued 2007 en
dc.identifier.issn 0018-9464 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31842
dc.subject Adaptive training en
dc.subject Artificial intelligence (AI) en
dc.subject Artificial neural networks en
dc.subject Decision trees (DTs) en
dc.subject Finite-element method-boundary-element (FEM-BE) techniques en
dc.subject Transformer design optimization en
dc.subject Transformer winding en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.classification Physics, Applied en
dc.subject.other Boundary element method en
dc.subject.other Computer simulation en
dc.subject.other Decision trees en
dc.subject.other Finite element method en
dc.subject.other Global optimization en
dc.subject.other Neural networks en
dc.subject.other Power transformers en
dc.subject.other Transformer windings en
dc.subject.other Adaptive training en
dc.subject.other Hybrid numerical model en
dc.subject.other Material classification en
dc.subject.other Transformer design optimization en
dc.subject.other Artificial intelligence en
dc.title Artificial intelligence combined with hybrid FEM-BE techniques for global transformer optimization en
heal.type conferenceItem en
heal.identifier.primary 10.1109/TMAG.2006.892258 en
heal.identifier.secondary http://dx.doi.org/10.1109/TMAG.2006.892258 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract The aim of the transformer design optimization is to define the dimensions of all the parts of the transformer, based on the given specification, using available materials economically in order to achieve lower cost, lower weight, reduced size, and better operating performance. In this paper, a hybrid artificial intelligence/numerical technique is proposed for the selection of winding material in power transformers. The technique uses decision trees and artificial neural networks for winding material classification, along with finite-element/boundary element modeling of the transformer for the calculation of the performance characteristics of each considered design. The efficiency and accuracy provided by the hybrid numerical model render it particularly suitable for use with optimization algorithms. The accuracy of this method is 96% (classification success rate for the winding material on an unknown test set), which makes it very efficient for industrial use. © 2007 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Magnetics en
dc.identifier.doi 10.1109/TMAG.2006.892258 en
dc.identifier.isi ISI:000245327200122 en
dc.identifier.volume 43 en
dc.identifier.issue 4 en
dc.identifier.spage 1633 en
dc.identifier.epage 1636 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής