HEAL DSpace

Biological removal of ions: Principles and applications

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsezos, M en
dc.date.accessioned 2014-03-01T02:44:29Z
dc.date.available 2014-03-01T02:44:29Z
dc.date.issued 2007 en
dc.identifier.issn 10226680 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31845
dc.subject Bioprecipitation en
dc.subject Bioreduction en
dc.subject Biosorption en
dc.subject Metal en
dc.subject Metalloids en
dc.subject Radionuclides en
dc.subject.other Active biomass en
dc.subject.other Active process en
dc.subject.other Anoxic environment en
dc.subject.other Bio-precipitation en
dc.subject.other BIofilm reactors en
dc.subject.other Biological reactor en
dc.subject.other Biological reductions en
dc.subject.other Biological removal en
dc.subject.other Bioreduction en
dc.subject.other Bioreductions en
dc.subject.other Biosorbents en
dc.subject.other Carrier material en
dc.subject.other Desorption process en
dc.subject.other Fluidized bed reactors en
dc.subject.other Full scale en
dc.subject.other Immobilization process en
dc.subject.other Inorganic moieties en
dc.subject.other Insoluble hydroxides en
dc.subject.other Metal-organic complexes en
dc.subject.other Microbial biomass en
dc.subject.other Microbial cells en
dc.subject.other Microbial metabolism en
dc.subject.other Microenvironments en
dc.subject.other Moving bed en
dc.subject.other Organic molecules en
dc.subject.other Packed bed reactor en
dc.subject.other Rotating biological contactor en
dc.subject.other Sorption-desorption cycles en
dc.subject.other Species interactions en
dc.subject.other Stand -alone en
dc.subject.other Terminal electron acceptors en
dc.subject.other Toxic compounds en
dc.subject.other Treatment process en
dc.subject.other Treatment technologies en
dc.subject.other Water streams en
dc.subject.other Biofilms en
dc.subject.other Biomass en
dc.subject.other Biosorption en
dc.subject.other Cells en
dc.subject.other Chemical reactors en
dc.subject.other Complexation en
dc.subject.other Coordination reactions en
dc.subject.other Cost reduction en
dc.subject.other Desorption en
dc.subject.other Fluid catalytic cracking en
dc.subject.other Fluidization en
dc.subject.other Fluidized beds en
dc.subject.other Ion exchange en
dc.subject.other Ion exchangers en
dc.subject.other Ions en
dc.subject.other Metabolism en
dc.subject.other Packed beds en
dc.subject.other Pelletizing en
dc.subject.other Radioisotopes en
dc.subject.other Radiometry en
dc.subject.other Resins en
dc.subject.other Reusability en
dc.subject.other Technology en
dc.subject.other Toxicity en
dc.subject.other Cell immobilization en
dc.title Biological removal of ions: Principles and applications en
heal.type conferenceItem en
heal.identifier.primary 10.4028/www.scientific.net/AMR.20-21.589 en
heal.identifier.secondary http://dx.doi.org/10.4028/www.scientific.net/AMR.20-21.589 en
heal.publicationDate 2007 en
heal.abstract Microbial cell - soluble species interactions can be part of technologies for the treatment of metal/metalloid and radionuclide bearing water streams in order to sequester the targeted species. Interactions of microbial cells and soluble targeted species include passive and active processes of metabolically inactive or active biomass, and result in the reduction of their mobility and toxicity. Different parts of the cell may sequester targeted species via processes such as complexation, chelation, coordination, ion exchange, precipitation and reduction. Collectively, these mechanisms have been referred to as sorption and the overall phenomenon as biosorption. The term biosorption is generally used to describe the passive interaction of microbial biomass with targeted species. The technologies based on these processes, lead to the set up of units, mainly in the form of packed bed reactors similar to the configuration of ion exchange resins reactors, placed at the end of a treatment process as a polishing stage. In order to maintain durability of the sorbent, the microbial cells harvested from different sources, are formulated into particles by way of immobilization - pelletization. In the early years of Biosorption, a significant effort was devoted to study the reusability of the sorbent by repeated sorption - desorption cycles, in order to reduce the operating cost of the technology. The availability of the biosorbent material, the reversibility of the desorption process, the presence of competing co-ions and organic molecules, posed significant scepticism and finally serious doubt about the industrial applicability of biosorption as a stand alone technology. However the mechanisms are active and present in biological reactors, and can contribute to overall species sequestering. Biological reactors based on active microbial biomass as alternative to passive sorption, exploit the self regenerating features of living biomass along with the traits of microbial metabolism. Active cells produce metabolites (i.e. EPS, simple inorganic moieties etc.) interacting chemically with the targeted species. The active biomass offers the additional attractive feature of forming biofilms on the surface of carrier materials allowing a natural way of cell immobilization. Different biofilm reactor configurations e.g. static or moving bed filters, fluidized bed reactors, rotating biological contactors support the development of biofilms. Conditions such as temperature, pH, presence of toxic compounds etc. should be considered in the applicability of the technology. Important metabolically mediated immobilization processes for metal/metalloid and radionuclide species are bioprecipitation and bioreduction. Bioprecipitation processes include the transformation of soluble species to insoluble hydroxides, carbonates, phosphates, sulfides or metal - organic complexes as a result of the microbial metabolism. In the case of biological reduction, the cells may use the species as terminal electron acceptors in anoxic environments to produce energy or reduce the toxicity of the cells microenvironment. Such processes form the basis for treatment technologies which are recently developed and applied both in pilot and full scale. © 2007 Trans Tech Publications. en
heal.journalName Advanced Materials Research en
dc.identifier.doi 10.4028/www.scientific.net/AMR.20-21.589 en
dc.identifier.volume 20-21 en
dc.identifier.spage 589 en
dc.identifier.epage 596 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής