HEAL DSpace

Building automated negotiation strategies enhanced by MLP and GR neural networks for opponent agent behaviour prognosis

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Roussaki, I en
dc.contributor.author Papaioannou, I en
dc.contributor.author Anangostou, M en
dc.date.accessioned 2014-03-01T02:44:29Z
dc.date.available 2014-03-01T02:44:29Z
dc.date.issued 2007 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31848
dc.subject MLP & GR neural networks en
dc.subject Negotiating agents en
dc.subject NN-assisted negotiation strategies en
dc.subject Opponent behaviour prediction en
dc.subject.other Decision making en
dc.subject.other Intelligent agents en
dc.subject.other Learning systems en
dc.subject.other Corporate owners en
dc.subject.other Learning techniques en
dc.subject.other Negotiating agents en
dc.subject.other Opponent behaviour prediction en
dc.subject.other Neural networks en
dc.title Building automated negotiation strategies enhanced by MLP and GR neural networks for opponent agent behaviour prognosis en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-540-73007-1_19 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-540-73007-1_19 en
heal.publicationDate 2007 en
heal.abstract A quite challenging research field in the artificial intelligence domain is the design and evaluation of agents handling automated negotiations on behalf of their human or corporate owners. This paper aims to enhance such agents with techniques enabling them to predict their opponents' negotiation behaviour and thus achieve more profitable results and better resource utilization. The proposed learning techniques are based on MLP and GR neural networks (NNs) that are used mainly to detect at an early stage the cases where agreements are not achievable, supporting the decision of the agents to withdraw or not from the specific negotiation thread. The designed NN-assisted negotiation strategies have been evaluated via extensive experiments and are proven to be very useful. © Springer-Verlag Berlin Heidelberg 2007. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-540-73007-1_19 en
dc.identifier.volume 4507 LNCS en
dc.identifier.spage 152 en
dc.identifier.epage 161 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής