HEAL DSpace

Color based texture - Classification of hysteroscopy images of the endometrium

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Neofytou, MS en
dc.contributor.author Tanos, V en
dc.contributor.author Pattichis, MS en
dc.contributor.author Pattichis, CS en
dc.contributor.author Kyriacou, EC en
dc.contributor.author Pavlopoulos, S en
dc.date.accessioned 2014-03-01T02:44:31Z
dc.date.available 2014-03-01T02:44:31Z
dc.date.issued 2007 en
dc.identifier.issn 05891019 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31859
dc.subject Early Detection en
dc.subject Neural Network Classifier en
dc.subject Statistical Learning en
dc.subject Texture Analysis en
dc.subject Texture Classification en
dc.subject Texture Features en
dc.subject Gray Scale Median en
dc.subject Region of Interest en
dc.subject.other Feature extraction en
dc.subject.other Neural networks en
dc.subject.other Support vector machines en
dc.subject.other Textures en
dc.subject.other Endometrium en
dc.subject.other Gynaecological cancer en
dc.subject.other Hysteroscopy images en
dc.subject.other Regions of Interest (ROI) en
dc.subject.other Statistical learning en
dc.subject.other Image classification en
dc.title Color based texture - Classification of hysteroscopy images of the endometrium en
heal.type conferenceItem en
heal.identifier.primary 10.1109/IEMBS.2007.4352427 en
heal.identifier.secondary http://dx.doi.org/10.1109/IEMBS.2007.4352427 en
heal.identifier.secondary 4352427 en
heal.publicationDate 2007 en
heal.abstract The objective of this study was to develop a CAD system for the classification of hysteroscopy images of the endometrium based on color texture analysis for the early detection of gynaecological cancer. A total of 416 Regions of Interest (ROIs) of the endometrium were extracted (208 normal and 208 abnormal) from 40 subjects. RGB images were gamma corrected and were converted to the HSV and YCrCb color systems. The following texture features were extracted for each channel of the RGB, HSV, and YCrCb systems: (1) Statistical Features, (ii) Spatial Gray Level Dependence Matrices and (iii) Gray Level Difference Statistics. The PNN statistical learning and SVM neural network classifiers were also investigated for classifying normal and abnormal ROIs. Results show that there is significant difference (using the Wilcoxon Rank Sum Test at a=0.05) between the texture features of normal and abnormal ROIs of the endometrium. Abnormal ROIs had higher gray scale median, variance, entropy and contrast and lower gray scale median and homogeneity values when compared to the normal ROIs. The highest percentage of correct classifications score was 79% and was achieved for the SVM models trained with the SF and GLDS features for differentiating between normal and abnormal ROIs. Concluding, a CAD system based on texture analysis and SVM models can be used to classify normal and abnormal endometrium tissue. Further work is needed to validate the system in more cases and organs. © 2007 IEEE. en
heal.journalName Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings en
dc.identifier.doi 10.1109/IEMBS.2007.4352427 en
dc.identifier.spage 864 en
dc.identifier.epage 867 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής