HEAL DSpace

Computing upward topological book embeddings of upward planar digraphs

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Giordano, F en
dc.contributor.author Liotta, G en
dc.contributor.author Mchedlidze, T en
dc.contributor.author Symvonis, A en
dc.date.accessioned 2014-03-01T02:44:31Z
dc.date.available 2014-03-01T02:44:31Z
dc.date.issued 2007 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31861
dc.subject Book Embedding en
dc.subject Graph Drawing en
dc.subject.other Computational geometry en
dc.subject.other Computational methods en
dc.subject.other Edge detection en
dc.subject.other Graph theory en
dc.subject.other Graph drawing en
dc.subject.other Topological book embedding en
dc.subject.other Embedded systems en
dc.title Computing upward topological book embeddings of upward planar digraphs en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-540-77120-3_17 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-540-77120-3_17 en
heal.publicationDate 2007 en
heal.abstract This paper studies the problem of computing an upward topological book embedding of an upward planar digraph G, i.e. a topological book embedding of G where all edges are monotonically increasing in the upward direction. Besides having its own inherent interest in the theory of upward book embeddability, the question has applications to well studied research topics of computational geometry and of graph drawing. The main results of the paper are as follows. - Every upward planar digraph G with n vertices admits an upward topological book embedding such that every edge of G crosses the spine of the book at most once. - Every upward planar digraph G with n vertices admits a point-set embedding on any set of n distinct points in the plane such that the drawing is upward and every edge of G has at most two bends. - Every pair of upward planar digraphs sharing the same set of n vertices admits an upward simultaneous embedding with at most two bends per edge. © Springer-Verlag Berlin Heidelberg 2007. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-540-77120-3_17 en
dc.identifier.volume 4835 LNCS en
dc.identifier.spage 172 en
dc.identifier.epage 183 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής