HEAL DSpace

Connectivity preserving state agreement for multiple unicycles

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Dimarogonas, DV en
dc.contributor.author Kyriakopoulos, KJ en
dc.date.accessioned 2014-03-01T02:44:32Z
dc.date.available 2014-03-01T02:44:32Z
dc.date.issued 2007 en
dc.identifier.issn 07431619 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31864
dc.subject Computer Simulation en
dc.subject Control Design en
dc.subject Feedback Control en
dc.subject Matrix Theory en
dc.subject Stability Theory en
dc.subject System Evolution en
dc.subject.other Canning en
dc.subject.other Closed loop control systems en
dc.subject.other Closed loop systems en
dc.subject.other Communication en
dc.subject.other Computational methods en
dc.subject.other Computer simulation en
dc.subject.other Graph theory en
dc.subject.other Laws and legislation en
dc.subject.other Matrix algebra en
dc.subject.other System stability en
dc.subject.other Vehicles en
dc.subject.other Closed loops en
dc.subject.other Communication graphs en
dc.subject.other Connectivity properties en
dc.subject.other Control designs en
dc.subject.other Control laws en
dc.subject.other Control strategies en
dc.subject.other Convergence properties en
dc.subject.other Decentralized feedback en
dc.subject.other Matrix theory en
dc.subject.other Non-holonomic en
dc.subject.other Non-holonomic control en
dc.subject.other nonsmooth en
dc.subject.other relative distances en
dc.subject.other Stability theories en
dc.subject.other system evolution en
dc.subject.other Team members en
dc.subject.other Time invariants en
dc.subject.other Control system stability en
dc.title Connectivity preserving state agreement for multiple unicycles en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ACC.2007.4282650 en
heal.identifier.secondary http://dx.doi.org/10.1109/ACC.2007.4282650 en
heal.identifier.secondary 4282650 en
heal.publicationDate 2007 en
heal.abstract This paper presents a decentralized feedback control strategy that drives a system of multiple nonholonomic kinematic unicycles to agreement, maintaining at the same time the connectivity properties of the initially formed communication graph. The communication graph is created based on the initial relative distances between the team members. The proposed control law guarantees that if the communication graph is initially connected, then it remains connected throughout the closed loop system evolution. This is achieved via a control design that renders the set of edges of the initially formed communication graph positively invariant for the trajectories of the closed loop system. The proposed nonholonomic control law is discontinuous and time-invariant and tools from nonsmooth stability theory and matrix theory are used to check the stability of the overall system. The convergence properties are verified through computer simulations. © 2007 IEEE. en
heal.journalName Proceedings of the American Control Conference en
dc.identifier.doi 10.1109/ACC.2007.4282650 en
dc.identifier.spage 1179 en
dc.identifier.epage 1184 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής