HEAL DSpace

Continuous medoid queries over moving objects

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadopoulos, S en
dc.contributor.author Sacharidis, D en
dc.contributor.author Mouratidis, K en
dc.date.accessioned 2014-03-01T02:44:32Z
dc.date.available 2014-03-01T02:44:32Z
dc.date.issued 2007 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31866
dc.subject Continuous query processing en
dc.subject Medoid queries en
dc.subject Moving object databases en
dc.subject.other Approximation algorithms en
dc.subject.other Computational efficiency en
dc.subject.other Integrated control en
dc.subject.other Optimization en
dc.subject.other Problem solving en
dc.subject.other Continuous query processing en
dc.subject.other Medoid queries en
dc.subject.other Moving object databases en
dc.subject.other Query languages en
dc.title Continuous medoid queries over moving objects en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-540-73540-3_3 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-540-73540-3_3 en
heal.publicationDate 2007 en
heal.abstract In the k-medoid problem, given a dataset P, we are asked to choose k points in P as the medoids. The optimal medoid set minimizes the average Euclidean distance between the points in P and their closest medoid. Finding the optimal k medoids is NP hard, and existing algorithms aim at approximate answers, i.e., they compute medoids that achieve a small, yet not minimal, average distance. Similarly in this paper, we also aim at approximate solutions. We consider, however, the continuous version of the problem, where the points in P move and our task is to maintain the medoid set on-the-fly (trying to keep the average distance small). To the best of our knowledge, this work constitutes the first attempt on continuous medoid queries. First, we consider centralized monitoring, where the points issue location updates whenever they move. A server processes the stream of generated updates and constantly reports the current medoid set. Next, we address distributed monitoring, where we assume that the data points have some computational capabilities, and they take over part of the monitoring task. In particular, the server installs adaptive filters (i.e., permissible spatial ranges, called safe regions) to the points, which report their location only when they move outside their filters. The distributed techniques reduce the frequency of location updates (and, thus, the network overhead and the server load), at the cost of a slightly higher average distance, compared to the centralized methods. Both our centralized and distributed methods do not make any assumption about the data moving patterns (e.g., velocity vectors, trajectories, etc) and can be applied to an arbitrary number of medoids k. We demonstrate the efficiency and efficacy of our techniques through extensive experiments. © Springer-Verlag Berlin Heidelberg 2007. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-540-73540-3_3 en
dc.identifier.volume 4605 LNCS en
dc.identifier.spage 38 en
dc.identifier.epage 56 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής