HEAL DSpace

Contrast enhancement of images using partitioned iterated function systems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Economopoulos, T en
dc.contributor.author Asvestas, P en
dc.contributor.author Matsopoulos, G en
dc.date.accessioned 2014-03-01T02:44:32Z
dc.date.available 2014-03-01T02:44:32Z
dc.date.issued 2007 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31867
dc.subject Contrast Enhanced en
dc.subject Fixed Point en
dc.subject Iterated Function System en
dc.subject Linear Transformation en
dc.subject.other Contractive transformations en
dc.subject.other Partitioned Iterated Function System (PIFS) en
dc.subject.other Spatial transforms en
dc.subject.other Algorithms en
dc.subject.other Image quality en
dc.subject.other Iterative methods en
dc.subject.other Pixels en
dc.subject.other Image enhancement en
dc.title Contrast enhancement of images using partitioned iterated function systems en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-540-74607-2_45 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-540-74607-2_45 en
heal.publicationDate 2007 en
heal.abstract A new algorithm for the contrast enhancement of images, based on the theory of Partitioned Iterated Function System (PIFS), is presented. A PIFS consists of contractive transformations, such that the original image is the fixed point of the union of these transformations. Each transformation involves the contractive affine spatial transform of a square block, as well as the linear transform of the gray levels of its pixels. The PIFS is used in order to create a low-pass version of the original image. The contrast-enhanced image is obtained by adding the difference of the original image with its lowpass version, to the original image itself. Quantitative and qualitative results stress the superior performance of the proposed contrast enhancement algorithm against two other widely used contrast enhancement methods. © Springer-Verlag Berlin Heidelberg 2007. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-540-74607-2_45 en
dc.identifier.volume 4678 LNCS en
dc.identifier.spage 497 en
dc.identifier.epage 508 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής