HEAL DSpace

Electronic structure of SP2 trap states in amorphous carbon

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Fotopoulos, N en
dc.contributor.author Xanthakis, JP en
dc.date.accessioned 2014-03-01T02:44:36Z
dc.date.available 2014-03-01T02:44:36Z
dc.date.issued 2007 en
dc.identifier.issn 0142-2421 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31892
dc.subject Amorphous carbon en
dc.subject Defect states en
dc.subject Electronic structure en
dc.subject Hartree-Fock en
dc.subject Trap states en
dc.subject.classification Chemistry, Physical en
dc.subject.other Amorphous materials en
dc.subject.other Binding energy en
dc.subject.other Carbon en
dc.subject.other Defects en
dc.subject.other Electronic structure en
dc.subject.other Field emission cathodes en
dc.subject.other Transport properties en
dc.subject.other Amorphous carbon en
dc.subject.other Defect states en
dc.subject.other Molecular orbitals en
dc.subject.other Trap states en
dc.subject.other Electron traps en
dc.title Electronic structure of SP2 trap states in amorphous carbon en
heal.type conferenceItem en
heal.identifier.primary 10.1002/sia.2475 en
heal.identifier.secondary http://dx.doi.org/10.1002/sia.2475 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract Amorphous carbon, a-C : H, contains an unusually high number of defect states, typically 10(19)/cm(3). These states play a major role in the process of field electron emission from a-C : H since they inhibit (by trapping) the transport of electrons from the cathode to the amorphous carbon film/vacuum interface. In this paper we examine the electronic structure of two of these defects, the pentagon-heptagon pair and a broken carbon double bond (by the addition of one hydrogen at one of the two carbon atoms). These defects are expected to be found in a graphitic environment in a-C : H. To obtain their electronic structure, we construct large enough graphitic clusters, embed the defects at their center and then use typical semiempirical quantum chemical methods such as the PM3 method - which is a parameterized Hartree-Fock method - to calculate the energy levels in the gap and the binding energies. Both defects produce energy levels just above the highest occupied molecular orbital (HOMO) of the graphite levels, but the pentagon-heptagon pair has a much higher binding energy, making it more stable. From the difference in binding energy, we conclude that the pentagon-heptagon pair is far more stable. Copyright (C) 2007 John Wiley & Sons, Ltd. en
heal.publisher JOHN WILEY & SONS LTD en
heal.journalName Surface and Interface Analysis en
dc.identifier.doi 10.1002/sia.2475 en
dc.identifier.isi ISI:000244295600010 en
dc.identifier.volume 39 en
dc.identifier.issue 2-3 en
dc.identifier.spage 132 en
dc.identifier.epage 134 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής