HEAL DSpace

Estimating the impact of shocks with artificial neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Nikolopoulos, K en
dc.contributor.author Bougioukos, N en
dc.contributor.author Giannelos, K en
dc.contributor.author Assimakopoulos, V en
dc.date.accessioned 2014-03-01T02:44:36Z
dc.date.available 2014-03-01T02:44:36Z
dc.date.issued 2007 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31901
dc.subject Artificial neural networks en
dc.subject Forecasting en
dc.subject Irregular events en
dc.subject Shocks en
dc.subject.other Decision support systems en
dc.subject.other Laws and legislation en
dc.subject.other Mathematical models en
dc.subject.other Parameter estimation en
dc.subject.other Time series analysis en
dc.subject.other Irregular events en
dc.subject.other Multiple Linear Regression en
dc.subject.other Neural networks en
dc.title Estimating the impact of shocks with artificial neural networks en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-540-74695-9_49 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-540-74695-9_49 en
heal.publicationDate 2007 en
heal.abstract Quantitative models are very successful forr extrapolating the basic trend-cycle component of time series. On the contrary time series models failed to handle adequately shocks or irregular events, that is non-periodic events such as oil crises, promotions, strikes, announcements, legislation etc. Forecasters usually prefer to use their own judgment in such problems. However their efficiency in such tasks is in doubt too and as a result the need of decision support tools in this procedure seem to be quite important. Forecasting with neural networks has been very popular across the Academia in the last decade. Estimating the impact of irregular events has been one of the most successful application areas. This study examines the relative performance of Artificial Neural Networks versus Multiple Linear Regression for estimating the impact of expected irregular future events. © Springer-Verlag Berlin Heidelberg 2007. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-540-74695-9_49 en
dc.identifier.volume 4669 LNCS en
dc.identifier.issue PART 2 en
dc.identifier.spage 476 en
dc.identifier.epage 485 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής