HEAL DSpace

Evaluation of texture features in hepatic tissue characterization from non-enhanced CT images

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Valavanis, IK en
dc.contributor.author Mougiakakou, SG en
dc.contributor.author Nikita, A en
dc.contributor.author Nikita, KS en
dc.date.accessioned 2014-03-01T02:44:37Z
dc.date.available 2014-03-01T02:44:37Z
dc.date.issued 2007 en
dc.identifier.issn 05891019 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31904
dc.subject.other Computerized tomography en
dc.subject.other Fractal dimension en
dc.subject.other Image enhancement en
dc.subject.other Neural networks en
dc.subject.other Radiology en
dc.subject.other Statistical mechanics en
dc.subject.other Hepatic tissue characterization en
dc.subject.other Radiologists en
dc.subject.other Spatial Gray Level Dependence Matrix (SGLDM) en
dc.subject.other Texture features en
dc.subject.other Tissue engineering en
dc.title Evaluation of texture features in hepatic tissue characterization from non-enhanced CT images en
heal.type conferenceItem en
heal.identifier.primary 10.1109/IEMBS.2007.4353145 en
heal.identifier.secondary http://dx.doi.org/10.1109/IEMBS.2007.4353145 en
heal.identifier.secondary 4353145 en
heal.publicationDate 2007 en
heal.abstract Aim of this paper is to evaluate the diagnostic contribution of various types of texture features in discrimination of hepatic tissue in abdominal non-enhanced Computed Tomography (CT) images. Regions of Interest (ROIs) corresponding to the classes: normal liver, cyst, hemangioma, and hepatocellular carcinoma were drawn by an experienced radiologist. For each ROI, Ave distinct sets of texture features are extracted using First Order Statistics (FOS), Spatial Gray Level Dependence Matrix (SGLDM), Gray Level Difference Method (GLDM), Laws' Texture Energy Measures (TEM), and Fractal Dimension Measurements (FDM). In order to evaluate the ability of the texture features to discriminate the various types of hepatic tissue, each set of texture features, or Its reduced version after genetic algorithm based feature selection, was fed to a feed-forward Neural Network (NN) classifier. For each NN, the area under Receiver Operating Characteristic (ROC) curves (Az) was calculated for all one-vs-all discriminations of hepatic tissue. Additionally, the total Az for the multi-class discrimination task was estimated. The results show that features derived from FOS perform better than other texture features (total Az: 0.802±0.083) In the discrimination of hepatic tissue. © 2007 IEEE. en
heal.journalName Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings en
dc.identifier.doi 10.1109/IEMBS.2007.4353145 en
dc.identifier.volume 2007 en
dc.identifier.spage 3741 en
dc.identifier.epage 3744 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής