HEAL DSpace

Genetic algorithms for municipal solid waste collection and routing optimization

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Karadimas, NV en
dc.contributor.author Papatzelou, K en
dc.contributor.author Loumos, VG en
dc.date.accessioned 2014-03-01T02:44:38Z
dc.date.available 2014-03-01T02:44:38Z
dc.date.issued 2007 en
dc.identifier.issn 15715736 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31924
dc.subject Cost Effectiveness en
dc.subject Dynamic Data en
dc.subject Genetic Algorithm en
dc.subject Geographic Information System en
dc.subject Management System en
dc.subject Municipal Solid Waste en
dc.subject Network Traffic en
dc.subject Optimal Routing en
dc.subject Population Density en
dc.subject Road Network en
dc.subject Route Optimization en
dc.subject Solid Waste en
dc.subject Spatial Database en
dc.subject Statistical Analysis en
dc.title Genetic algorithms for municipal solid waste collection and routing optimization en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-0-387-74161-1_24 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-0-387-74161-1_24 en
heal.publicationDate 2007 en
heal.abstract In the present paper, the Genetic Algorithm (GA) is used for the identification of optimal routes in the case of Municipal Solid Waste (MSW) collection. The identification of a route for MSW collection trucks is critical since it has been estimated that, of the total amount of money spent for the collection, transportation, and disposal of solid waste, approximately 60-80% is spent on the collection phase. Therefore, a small percentage improvement in the collection operation can result to a significant saving in the overall cost. The proposed MSW management system is based on a geo-referenced spatial database supported by a geographic information system (GIS). The GIS takes into account all the required parameters for solid waste collection. These parameters include static and dynamic data, such as the positions of waste bins, the road network and its related traffic, as well as the population density in the area under study. In addition, waste collection schedules, truck capacities and their characteristics are also taken into consideration. Spatiotemporal statistical analysis is used to estimate inter-relations between dynamic factors, like network traffic changes in residential and commercial areas. The user, in the proposed system, is able to define or modify all of the required dynamic factors for the creation of alternative initial scenarios. The objective of the system is to identify the most cost-effective scenario for waste collection, to estimate its running cost and to simulate its application. © 2007 International Federation for Information Processing. en
heal.journalName IFIP International Federation for Information Processing en
dc.identifier.doi 10.1007/978-0-387-74161-1_24 en
dc.identifier.volume 247 en
dc.identifier.spage 223 en
dc.identifier.epage 231 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής