HEAL DSpace

High-level concept detection based on mid-level semantic information and contextual adaptation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mylonas, P en
dc.contributor.author Spyrou, E en
dc.contributor.author Avrithis, Y en
dc.date.accessioned 2014-03-01T02:44:39Z
dc.date.available 2014-03-01T02:44:39Z
dc.date.issued 2007 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31930
dc.subject Feature Extraction en
dc.subject Fuzzy Set en
dc.subject Hierarchical Clustering en
dc.subject Integrated Approach en
dc.subject Semantic Information en
dc.subject Unsupervised Learning en
dc.subject Neural Network en
dc.subject.other Algebra en
dc.subject.other Feature extraction en
dc.subject.other Fuzzy logic en
dc.subject.other Fuzzy sets en
dc.subject.other Multimedia services en
dc.subject.other Neural networks en
dc.subject.other Ontology en
dc.subject.other Semantics en
dc.subject.other Set theory en
dc.subject.other Concept detection en
dc.subject.other Contextual knowledge en
dc.subject.other Fuzzy algebra en
dc.subject.other Hierarchical clustering methods en
dc.subject.other Integrated approach en
dc.subject.other International (CO) en
dc.subject.other Low-level features en
dc.subject.other Media adaptation en
dc.subject.other Mid level features en
dc.subject.other P rior work en
dc.subject.other Personalization en
dc.subject.other Semantic information en
dc.subject.other Semantic multimedia analysis en
dc.subject.other Information theory en
dc.title High-level concept detection based on mid-level semantic information and contextual adaptation en
heal.type conferenceItem en
heal.identifier.primary 10.1109/SMAP.2007.4414409 en
heal.identifier.secondary http://dx.doi.org/10.1109/SMAP.2007.4414409 en
heal.identifier.secondary 4414409 en
heal.publicationDate 2007 en
heal.abstract In this paper we propose the use of enhanced mid-level information, such as information obtained from the application of supervised or unsupervised learning methodologies on low-level characteristics, in order to improve semantic multimedia analysis. High-level, a priori contextual knowledge about the semantic meaning of objects and their low-level visual descriptions are combined in an integrated approach that handles in a uniform way the gap between semantics and low-level features. Prior work on low-level feature extraction is extended and a region thesaurus containing all mid-level features is constructed using a hierarchical clustering method. A model vector that contains the distances from each mid-level element is formed and a neural network-based detector is trained for each semantic concept. Contextual adaptation improves the quality of the produced results, by utilizing fuzzy algebra, fuzzy sets and relations. The novelty of the presented work is the contextdriven mid-level manipulation of region types, utilizing a domain-independent ontology infrastructure to handle the knowledge. Early experimental results are presented using data derived from the beach domain. © 2007 IEEE. en
heal.journalName SMAP07 - Second International Workshop on Semantic Media Adaptation and Personalization en
dc.identifier.doi 10.1109/SMAP.2007.4414409 en
dc.identifier.spage 193 en
dc.identifier.epage 198 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής