dc.contributor.author |
Chortaras, A |
en |
dc.contributor.author |
Stamou, G |
en |
dc.contributor.author |
Stafylopatis, A |
en |
dc.date.accessioned |
2014-03-01T02:44:42Z |
|
dc.date.available |
2014-03-01T02:44:42Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31940 |
|
dc.subject |
Database Query |
en |
dc.subject |
Fuzzy Logic Programming |
en |
dc.subject |
Fuzzy Rules |
en |
dc.subject |
Machine Learning |
en |
dc.subject |
Query Answering |
en |
dc.subject |
Relational Database System |
en |
dc.subject |
Neural Network |
en |
dc.subject.other |
Integration |
en |
dc.subject.other |
Logic programming |
en |
dc.subject.other |
Query processing |
en |
dc.subject.other |
Relational database systems |
en |
dc.subject.other |
Set theory |
en |
dc.subject.other |
Fuzzy facts |
en |
dc.subject.other |
Fuzzy logic programs |
en |
dc.subject.other |
Prototype systems |
en |
dc.subject.other |
Query answering services |
en |
dc.subject.other |
Fuzzy rules |
en |
dc.title |
Integrated query answering with weighted fuzzy rules |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-540-75256-1_67 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-540-75256-1_67 |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
Weighted fuzzy logic programs increase the expressivity of fuzzy logic programs by allowing the association of a significance weight with each atom in the body of a fuzzy rule. In this paper, we propose a prototype system for the practical integration of weighted fuzzy logic programs with relational database systems in order to provide efficient query answering services. In the system, a dynamic weighted fuzzy logic program is a set of rules together with a set of database queries, fuzzification transformations and fact derivation rules, which allow the provided set of rules to be augmented with a set of fuzzy facts retrieved from the underlying databases. The weights of the rules may be estimated by a neural network-based machine learning process using some specially designated for this purpose training database data. © Springer-Verlag Berlin Heidelberg 2007. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-540-75256-1_67 |
en |
dc.identifier.volume |
4724 LNAI |
en |
dc.identifier.spage |
767 |
en |
dc.identifier.epage |
778 |
en |