HEAL DSpace

Intelligent flow-based sampling for effective network anomaly detection

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Androulidakis, G en
dc.contributor.author Papavassiliou, S en
dc.date.accessioned 2014-03-01T02:44:42Z
dc.date.available 2014-03-01T02:44:42Z
dc.date.issued 2007 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31941
dc.subject Anomaly detection en
dc.subject Sampling en
dc.subject Traffic measurements en
dc.subject.other Anomaly detection en
dc.subject.other Flow sampling en
dc.subject.other Network attacks en
dc.subject.other Traffic measurements en
dc.subject.other Computer worms en
dc.subject.other Intelligent agents en
dc.subject.other Scalability en
dc.subject.other Telecommunication traffic en
dc.subject.other Intrusion detection en
dc.title Intelligent flow-based sampling for effective network anomaly detection en
heal.type conferenceItem en
heal.identifier.primary 10.1109/GLOCOM.2007.374 en
heal.identifier.secondary http://dx.doi.org/10.1109/GLOCOM.2007.374 en
heal.identifier.secondary 4411284 en
heal.publicationDate 2007 en
heal.abstract Sampling has become an essential component of scalable Internet traffic monitoring and anomaly detection. In this paper, the emphasis is placed on the evaluation of the impact of using intelligent flow sampling techniques on the anomaly detection process. Based on the observation that small flows are usually the source of many network attacks (DDoS, portscans, worm propagation) we first introduce a new flow sampling methodology that focuses on the selection of small flows and achieves to improve anomaly detection effectiveness, while at the same time reduces the number of selected flows. The performance evaluation of the impact of intelligent flow-based sampling on the anomaly detection process is achieved through the adoption and application of a sequential non-parametric Change-Point Detection anomaly detection method on realistic data that have been collected from a real operational university campus network. © 2007 IEEE. en
heal.journalName GLOBECOM - IEEE Global Telecommunications Conference en
dc.identifier.doi 10.1109/GLOCOM.2007.374 en
dc.identifier.spage 1948 en
dc.identifier.epage 1953 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής